云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 江苏省苏锡常镇四市2018届高三教学情况调研(一)(3月)数学试题+Word版含答案

江苏省苏锡常镇四市2018届高三教学情况调研(一)(3月)数学试题+Word版含答案

  • 62 次阅读
  • 3 次下载
  • 2025/6/17 19:00:12

由正弦定理得

OQsin?OPQ?OPsin?OQP,即3sin??3sin(????(?2,

??))所以

3sin??sin(????(?2??))?sin(?2?(???))?cos(???)?cos?cos??sin?sin?,

从而(3?sin?)sin??cos?cos?,其中3?sin??0,cos??0, 所以tan??cos?3?sin?cos?3?sin?,

记f(?)?,f'(?)?1?3sin?2,??(0,?2);

(3?sin?)33令f'(?)?0,sin??,存在唯一?0?(0,?2)使得sin?0?33,

当??(0,?0)时f'(?)?0,f(?)单调增,当??(?0,所以当???0时,f(?)最大,即tan?OPQ最大,

?2)时f'(?)?0,f(?)单调减,

又?OPQ为锐角,从而?OPQ最大,此时sin??33.

答:观赏效果达到最佳时,?的正弦值为33. 19.解:(1)函数y?g(x)的定义域为(0,??).当a?0,b??2,f(x)?x?2x?c, ∵f(x)?g(x)恒成立,∴x?2x?c?lnx恒成立,即c?lnx?x?2x.

1x1?2x?3xx3333令?(x)?lnx?x?2x,则?'(x)?3?3x?2?2?(1?x)(1?3x?3x)x2,

令?'(x)?0,得x?1,∴?(x)在(0,1]上单调递增, 令?'(x)?0,得x?1,∴?(x)在[1,??)上单调递减, ∴当x?1时,[?(x)]max??(1)?1. ∴c?1.

9

(2)①当b??3时,f(x)?x?ax?3x?c,f'(x)?3x?2ax?3. 由题意,f'(x)?3x?2ax?3?0对x?(?1,1)恒成立,

?f'(1)?3?2a?3?0?f'(?1)?3?2a?3?02322∴?,∴a?0,即实数a的值为0.

②函数y?h(x)的定义域为(0,??).

当a?0,b??3,c?2时,f(x)?x?3x?2.

f'(x)?3x?3,令f'(x)?3x?3?0,得x?1.

x223 (0,1) 1 0 (1,??) f'(x) f(x) - + 极小值0 ∴当x?(0,1)时,f(x)?0,当x?1时,f(x)?0,当x?(1,??)时,f(x)?0. 对于g(x)?lnx,当x?(0,1)时,g(x)?0,当x?1时,g(x)?0,当x?(1,??)时,

g(x)?0.

∴当x?(0,1)时,h(x)?f(x)?0,当x?1时,h(x)?0,当x?(1,??)时,h(x)?0. 故函数y?h(x)的值域为[0,??).

*20.解:(1)由2Sn?an?1?3(n?N)得2Sn?1?an?2?3,两式作差得2an?1?an?2?an?1,

*即an?2?3an?1(n?N).

a1?3,a2?2S1?3?9,所以an?1?3an(n?N),an?0,则

*an?1an?3(n?N),所

*以数列{an}是首项为3公比为3的等比数列,

n*所以an?3(n?N);

jki(2)由题意?aj??ak?2?6ai,即?3??3?2?6?3,

所以?3j?i??3k?i?12,其中j?i?1,k?i?2,

10

所以?312??3j?i?3??3,?3??3k?ik?i?9??9,

j?i?12,所以j?i?1,k?i?2,????1;

n?1(3)由a1bn?a2bn?1?a3bn?2?????anb1?3?3n?3得,

a1bn?1?a2bn?a3bn?1?????anb2?an?1b1?3n?2?3(n?1)?3,

n?2a1bn?1?3(a1bn?a2bn?1?????an?1b2?anb1)?3a1bn?1?3(3n?1?3(n?1)?3,

?3n?3)?3n?2?3(n?1)?3,

n?2n?1?3(n?1)?3?3(3?3n?3),即3bn?1?6n?3, 所以3bn?1?3所以bn?1?2n?1(n?N),

1?1*又因为a1b1?3?3?1?3?3,得b1?1,所以bn?2n?1(n?N),

*从而Tn?1?3?5?????(2n?1)?1?2n?1249Tnannn?n2(n?N),

*Tnan?n32n(n?N),

*当n?1时

T1a1?13;当n?2时

T2a2?;当n?3时

T3a3?13;

下面证明:对任意正整数n?3都有

?13,

Tn?1an?1?Tnan2?1??(n?1)???3?n?1?1?2?1??n??????3??3?2n?1?1?22((n?1)?3n)????3?Tn?1an?1TnanTnanT3a3n?1(?2n?2n?1),

2当n?3时,?2n?2n?1?(1?n)?n(2?n)?0,即

2??0,

所以当n?3时,

Tnan递减,所以对任意正整数n?3都有

??13;

综上可得,满足等式

Tnan?13的正整数n的值为1和3.

11

2017-2018学年度苏锡常镇四市高三教学情况调研(一)

数学Ⅱ(附加题)参考答案

21.【选做题】

A. 选修4-1:几何证明选讲

证明:(1)连接OD,BD.因为AB是圆O的直径,所以?ADB?90,AB?2OB. 因为CD是圆O的切线,所以?CDO?90, 又因为DA?DC,所以?A??C, 于是?ADB??CDO,得到AB?CO, 所以AO?BC,从而AB?2BC.

(2)解:由AB?2及AB?2BC得到CB?1,CA?3.由切割线定理,

CD2?CB?CA?1?3?3,所以CD?3. B. 选修4-2:矩阵与变换 解:(1)AB???4?00??1??5??1??1??02??4???5??08??; 5??5??1??4?08??5??5??28??a?,又因为?X???????,所以

15?????b?(2)由B?1A?1X???,解得X?AB????a?28,b?5.

C. 选修4-4:坐标系与参数方程 解:在?sin(???3)??3中,令??0,得??2,

所以圆C的圆心的极坐标为(2,0).

?4因为圆C的半径PC?(22)?2?2?2222?2?cos?2,

12

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

由正弦定理得OQsin?OPQ?OPsin?OQP,即3sin??3sin(????(?2, ??))所以3sin??sin(????(?2??))?sin(?2?(???))?cos(???)?cos?cos??sin?sin?, 从而(3?sin?)sin??cos?cos?,其中3?sin??0,cos??0, 所以tan??cos?3?sin?cos?3?sin?, 记f(?)?,f'(?)?1?3sin?2,??(0,?2); (3?sin?)33令f'(?)?0,sin??,存在唯一?0?(0,?2)使得sin?0?33, 当??(0,?0)时f'(?)?0,f(?)单调增,当??(?0,所以当???0时,f(?)最大,即tan?OPQ最大, ?

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com