云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 八年级数学平方差公式 教案人教版

八年级数学平方差公式 教案人教版

  • 62 次阅读
  • 3 次下载
  • 2025/12/10 16:59:55

§15.3.1 平方差公式

教学目标

(一)教学知识点

1.经历探索平方差公式的过程.

2.会推导平方差公式,并能运用公式进行简单的运算. (二)能力训练要求

1.在探索平方差公式的过程中,培养符号感和推理能力. 2.培养学生观察、归纳、概括的能力. (三)情感与价值观要求

在计算过程中发现规律,并能用符号表示,从而体会数学的简捷美. 教学重点

平方差公式的推导和应用. 教学难点

理解平方差公式的结构特征,灵活应用平方差公式. 教学方法

探究与讲练相结合. 通过计算发现规律,进一步探索公式的结构特征,在老师的讲解和学生的练习中让学生体会公式实质,学会灵活运用. 教具准备 投影片. 教学过程

Ⅰ.提出问题,创设情境

[师]你能用简便方法计算下列各题吗? (1)2001×1999 (2)998×1002

[生甲]直接乘比较复杂,我考虑把它化成整百,整千的运算,从而使运算简单,2001可以写成2000+1,1999可以写成2000-1,那么2001×1999可以看成是多项式的积,根据多项式乘法法则可以很快算出. [生乙]那么998×1002=(1000-2)(1000+2)了. [师]很好,请同学们自己动手运算一下. [生](1)2001×1999=(2000+1)(2000-1)

2

=2000-1×2000+1×2000+1×(-1) =20002-1 =4000000-1 =3999999.

(2)998×1002=(1000-2)(1000+2)

=10002+1000×2+(-2)×1000+(-2)×2 =10002-22 =1000000-4 =1999996.

[师]2001×1999=20002-12 998×1002=10002-22

它们积的结果都是两个数的平方差,那么其他满足这个特点的运算是否也有这个规律呢?我们继续进行探索.

Ⅱ.导入新课 [师]出示投影片

计算下列多项式的积. (1)(x+1)(x-1) (2)(m+2)(m-2) (3)(2x+1)(2x-1) (4)(x+5y)(x-5y) 观察上述算式,你发现什么规律?运算出结果后,你又发现什么规律?再举两例验证你的发现.

(学生讨论,教师引导)

[生甲]上面四个算式中每个因式都是两项.

[生乙]我认为更重要的是它们都是两个数的和与差的积.例如算式(1)是x与1这两个数的和与差的积;算式(2)是m与2这两个数的和与差的积;算式(3)是2x与1?这两个数的和与差的积;算式(4)是x与5y这两个数的和与差的积.

[师]这个发现很重要,请同学们动笔算一下,相信你还会有更大的发现. [生]解:(1)(x+1)(x-1)

2

=x+x-x-1=x2-12 (2)(m+2)(m-2)

=m2+2m-2m-2×2=m2-22 (3)(2x+1)(2x-1)

=(2x)2+2x-2x-1=(2x)2-12 (4)(x+5y)(x-5y)

2

=x+5y·x-x·5y-(5y)2 =x2-(5y)2

[生]从刚才的运算我发现:

也就是说,两个数的和与差的积等于这两个数的平方差,这和我们前面的简便运算得出的是同一结果.

[师]能不能再举例验证你的发现? [生]能.例如:

51×49=(50+1)(50-1)=502+50-50-1=502-12.

即(50+1)(50-1)=50-12. (-a+b)(-a-b)=(-a)·(-a)+(-a)·(-b)+b·(-a)+b·(-b)

=(-a)2-b2=a2-b2

2

这同样可以验证:两个数的和与这两个数的差的积,等于这两个数的平方差. [师]为什么会是这样的呢?

[生]因为利用多项式与多项式的乘法法则展开后,中间两项是同类项,且系数互为相反数,所以和为零,只剩下这两个数的平方差了.

[师]很好.请用一般形式表示上述规律,并对此规律进行证明. [生]这个规律用符号表示为: (a+b)(a-b)=a2-b2.其中a、b表示任意数,也可以表示任意的单项式、多项式.

利用多项式与多项式的乘法法则可以做如下证明: (a+b)(a-b)=a2-ab+ab-b2=a2-b2. [师]同学们真不简单.老师为你们感到骄傲.能不能给我们发现的规律(a+b)

22

(a-b)=a-b起一个名字呢?

[生]最终结果是两个数的平方差,叫它“平方差公式”怎样样? [师]有道理.这就是我们探究得到的“平方差公式”,?请同学们分别用文字语言和符号语言叙述这个公式. (出示投影)

两个数的和与这两个数的差的积,等于这两个数的平方差. 即:(a+b)(a-b)=a2-b2

平方差公式是多项式乘法运算中一个重要的公式,用它直接运算会很简便,但必须注意符合公式的结构特征才能应用. 在应用中体会公式特征,感受平方差公式给运算带来的方便,从而灵活运用平方差公式进行计算 (出示投影片)

例1:运用平方差公式计算: (1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y) 例2:计算: (1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)

[师生共析]运用平方差公式时要注意公式的结构特征,学会对号入座. 在例1的(1)中可以把3x看作a,2看作b. 即:(3x+2)(3x-2)=(3x)2-22

(a+b)(a-b)=a2-b2

同样的方法可以完成(2)、(3).如果形式上不符合公式特征,可以做一些简单的转化工作,使它符合平方差公式的特征.比如(2)应先作如下转化: (b+2a)(2a-b)=(2a+b)(2a-b).

如果转化后还不能符合公式特征,则应考虑多项式的乘法法则.

(作如上分析后,学生可以自己完成两个例题.?也可以通过学生的板演进行评析达到巩固和深化的目的) [例1]解:(1)(3x+2)(3x-2)=(3x)2-22=9x2-4. (2)(b+2a)(2a-b)=(2a+b)(2a-b)=(2a)2-b2=4a2-b2. (3)(-x+2y)(-x-2y)=(-x)2-(2y)2=x2-4y2. [例2]解:(1)102×98=(100+2)(100-2)

22

=100-2=10000-4=9996. (2)(y+2)(y-2)-(y-1)(y+5) =y2-22-(y2+5y-y-5) =y2-4-y2-4y+5 =-4y+1.

[师]我们能不能总结一下利用平方差公式应注意什么? [生]我觉得应注意以下几点:

(1)公式中的字母a、b可以表示数,也可以是表示数的单项式、多项式即整式.

(2)要符合公式的结构特征才能运用平方差公式. (3)有些多项式与多项式的乘法表面上不能应用公式,?但通过加法或乘法的交换律、结合律适当变形实质上能应用公式. [生]运算的最后结果应该是最简才行. [师]同学们总结得很好.下面请同学们完成一组闯关练习.优胜组选派一名代表做总结发言. Ⅲ.随堂练习 出示投影片: 计算: (1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b) (4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2) Ⅳ.课时小结

通过本节学习我们掌握了如下知识. (1)平方差公式

两个数的和与这两个数的差的积等于这两个数的平方差.?这个公式叫做乘法的平方差公式.即(a+b)(a-b)=a2-b2. (2)公式的结构特征

①公式的字母a、b可以表示数,也可以表示单项式、多项式; ②要符合公式的结构特征才能运用平方差公式;

③有些式子表面上不能应用公式,但通过适当变形实质上能应用公

式.?如:(x+y-z)(x-y-z)=[(x-z)+y][(x-z)-y]=(x-z)2-y2. Ⅴ.课后作业

1.课本P179练习1、2.

2.课本P182~P183习题15.3─1题.

《三级训练》 板书设计 §15.3.1 平方差公式 一、1.用简便方法计算 (1)2001×1999 (2)998×1002 2.计算: (1)(x+1)(x-1) (2)(m+2)(m-2) (3)(2x+1)(2x-1) (4)(x+5y)(x-5y) 二、探究、归纳规律──平方差公式; 文字语言:两数和与这两数差的积,等于它们的平方差 符号语言:(a+b)(a-b)=a2-b2 三、应用、升华: 1.例1: 例2: 2.闯关练习 四、小结

搜索更多关于: 八年级数学平方差公式 教案人教版 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

§15.3.1 平方差公式 教学目标 (一)教学知识点 1.经历探索平方差公式的过程. 2.会推导平方差公式,并能运用公式进行简单的运算. (二)能力训练要求 1.在探索平方差公式的过程中,培养符号感和推理能力. 2.培养学生观察、归纳、概括的能力. (三)情感与价值观要求 在计算过程中发现规律,并能用符号表示,从而体会数学的简捷美. 教学重点 平方差公式的推导和应用. 教学难点 理解平方差公式的结构特征,灵活应用平方差公式. 教学方法 探究与讲练相结合. 通过计算发现规律,进一步探索公式的结构特征,在老师的讲解和学

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com