当前位置:首页 > 算法设计与分析(第2版) 王红梅 胡明 习题答案
精心整理
习题1
1.
图论诞生于七桥问题。出生于瑞士的伟大数学家欧拉(LeonhardEuler,1707—1783)提出并解决了该问题。七桥问题是这样描述北区 的:一个人是否能在一次步行中穿越哥尼
东区 斯堡(现在叫加里宁格勒,在波罗的海南岛区 岸)城中全部的七座桥后回到起点,且每
南区 座桥只经过一次,图1.7是这条河以及河
图1.7七桥问题
上的两个岛和七座桥的草图。请将该问题
的数据模型抽象出来,并判断此问题是否有解。
七桥问题属于一笔画问题。 输入:一个起点 输出:相同的点 1,一次步行 2,经过七座桥,且每次只经历过一次 3,回到起点 该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。另一类是只有二个奇点的图形。
2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。请用伪代码描述这个版本的欧几里德算法 1.r=m-n
2.循环直到r=0 2.1??m=n 2.2???n=r 2.3??r=m-n 3?输出m
3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。要求分别给出伪代码和C++描述。
//采用分治法 //对数组先进行快速排序 //在依次比较相邻的差 #include
intprvotkey=b[low]; b[0]=b[low]; while(low while(low b[low]=b[high]; while(low b[high]=b[low]; } 精心整理 b[low]=b[0]; returnlow; } voidqsort(intl[],intlow,inthigh) { intprvotloc; if(low prvotloc=partions(l,low,high);//将第一次排序的结果作为枢轴 qsort(l,low,prvotloc-1);//递归调用排序由low到prvotloc-1 qsort(l,prvotloc+1,high);//递归调用排序由prvotloc+1到high } } voidquicksort(intl[],intn) { qsort(l,1,n);//第一个作为枢轴,从第一个排到第n个 } intmain() { inta[11]={0,2,32,43,23,45,36,57,14,27,39}; intvalue=0;//将最小差的值赋值给value for(intb=1;b<11;b++) cout< if((a[i+1]-a[i])<=(a[i+2]-a[i+1])) value=a[i+1]-a[i]; else value=a[i+2]-a[i+1]; } cout< 4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。要求分别给出伪代码和C++描述。 #include intmid_value=0;//将“既不是最大也不是最小的元素”的值赋值给它 for(inti=0;i!=4;++i) { if(a[i+1]>a[i]&&a[i+1] 精心整理 mid_value=a[i+1]; cout< 5.编写程序,求n至少为多大时,n个“1”组成的整数能被2013整除。 #include doublevalue=0; for(intn=1;n<=10000;++n) { value=value*10+1; if(value 13==0) { cout<<\至少为:\ break; } }//for return0; } 6.计算π值的问题能精确求解吗?编写程序,求解满足给定精度要求的π值 #include doublea,b; doublearctan(doublex);//声明 a=16.0*arctan(1/5.0); b=4.0*arctan(1/239); cout<<\ return0; } doublearctan(doublex) { inti=0; doubler=0,e,f,sqr;//定义四个变量初 sqr=x*x; 精心整理 e=x; while(e/i>1e-15)//定义精度范围 { f=e/i;//f是每次r需要叠加的方程 r=(i%4==1)?r+f:r-f; e=e*sqr;//e每次乘于x的平方 i+=2;//i每次加2 }//while returnr; } 7.圣经上说:神6天创造天地万有,第7日安歇。为什么是6天呢?任何一个自然数的因数中都有1和它本身,所有小于它本身的因数称为这个数的真因数,如果一个自然数的真因数之和等于它本身,这个自然数称为完美数。例如,6=1+2+3,因此6是完美数。神6天创造世界,暗示着该创造是完美的。设计算法,判断给定的自然数是否是完美数 #include intvalue,k=1; cin>>value; for(inti=2;i!=value;++i) { while(value%i==0) { k+=i;//k为该自然数所有因子之和 value=value/i; } }//for if(k==value) cout<<\该自然数是完美数\ else cout<<\该自然数不是完美数\ return0; } 8.有4个人打算过桥,这个桥每次最多只能有两个人同时通过。他们都在桥的某一端,并且是在晚上,过桥需要一只手电筒,而他们只有一只手电筒。这就意味着两个人过桥后必须有一个人将手电筒带回来。每个人走路的速度是不同的:甲过桥要用1分钟,乙过桥要用2分钟,丙过桥要用5分钟,丁过桥要用10分钟,显然,两个人走路的速度等于其中较慢那个人的速度,问题是他们全部过桥最少要用多长时间? 由于甲过桥时间最短,那么每次传递手电的工作应有甲完成 甲每次分别带着乙丙丁过桥 例如: 第一趟:甲,乙过桥且甲回来 第二趟:甲,丙过桥且甲回来 第一趟:甲,丁过桥 一共用时19小时 9.欧几里德游戏:开始的时候,白板上有两个不相等的正整数,两个玩家交替行动,每次行
共分享92篇相关文档