云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2012湖北省学习数据库入门

2012湖北省学习数据库入门

  • 62 次阅读
  • 3 次下载
  • 2025/6/14 1:44:39

1、对一般二叉树,仅根据一个先序、中序、后序遍历,不能确定另一个遍历序列。但对于满二叉树,任一结点的左右子树均含有数量相等的结点,根据此性质,可将任一遍历序列转为另一遍历序列(即任一遍历序列均可确定一棵二叉树)。

void PreToPost(ElemType pre[] ,post[],int l1,h1,l2,h2)

//将满二叉树的先序序列转为后序序列,l1,h1,l2,h2是序列初始和最后结点的下标。 {if(h1>=l1)

{post[h2]=pre[l1]; //根结点

half=(h1-l1)/2; //左或右子树的结点数

PreToPost(pre,post,l1+1,l1+half,l2,l2+half-1) //将左子树先序序列转为后序序列 PreToPost(pre,post,l1+half+1,h1,l2+half,h2-1) //将右子树先序序列转为后序序列 } }//PreToPost 32. .叶子结点只有在遍历中才能知道,这里使用中序递归遍历。设置前驱结点指针pre,初始为空。第一个叶子结点由指针head指向,遍历到叶子结点时,就将它前驱的rchild指针指向它,最后叶子结点的rchild为空。 LinkedList head,pre=null; //全局变量 LinkedList InOrder(BiTree bt)

//中序遍历二叉树bt,将叶子结点从左到右链成一个单链表,表头指针为head {if(bt){InOrder(bt->lchild); //中序遍历左子树

if(bt->lchild==null && bt->rchild==null) //叶子结点 if(pre==null) {head=bt; pre=bt;} //处理第一个叶子结点

else{pre->rchild=bt; pre=bt; } //将叶子结点链入链表 InOrder(bt->rchild); //中序遍历左子树 pre->rchild=null; //设置链表尾 }

return(head); } //InOrder

时间复杂度为O(n),辅助变量使用head和pre,栈空间复杂度O(n)

2、矩阵中元素按行和按列都已排序,要求查找时间复杂度为O(m+n),因此不能采用常规的二层循环的查找。可以先从右上角(i=a,j=d)元素与x比较,只有三种情况:一是A[i,j]>x,这情况下向j 小的方向继续查找;二是A[i,j]

void search(datatype A[ ][ ], int a,b,c,d, datatype x)

//n*m矩阵A,行下标从a到b,列下标从c到d,本算法查找x是否在矩阵A中. {i=a; j=d; flag=0; //flag是成功查到x的标志 while(i<=b && j>=c)

if(A[i][j]==x) {flag=1;break;} else if (A[i][j]>x) j--; else i++;

if(flag) printf(“A[%d][%d]=%d”,i,j,x); //假定x为整型. else printf(“矩阵A中无%d 元素”,x); }算法search结束。

[算法讨论]算法中查找x的路线从右上角开始,向下(当x>A[i,j])或向左(当x

3、假设以邻接矩阵作为图的存储结构,编写算法判别在给定的有向图中是否存在一个简单有向回路,若存在,则以顶点序列的方式输出该回路(找到一条即可)。(注:图中不存在顶点到自己的弧)

有向图判断回路要比无向图复杂。利用深度优先遍历,将顶点分成三类:未访问;已访问但其邻接点未访问完;已访问且其邻接点已访问完。下面用0,1,2表示这三种状态。前面已提到,若dfs(v)结束前出现顶点u到v的回边,则图中必有包含顶点v和u的回路。对应程序中v的状态为1,而u是正访问的顶点,若我们找出u的下一邻接点的状态为1,就可以输出回路了。

void Print(int v,int start ) //输出从顶点start开始的回路。 {for(i=1;i<=n;i++)

if(g[v][i]!=0 && visited[i]==1 ) //若存在边(v,i),且顶点i的状态为1。 {printf(“%d”,v);

if(i==start) printf(“\\n”); else Print(i,start);break;}//if }//Print void dfs(int v) {visited[v]=1; for(j=1;j<=n;j++ )

if (g[v][j]!=0) //存在边(v,j)

if (visited[j]!=1) {if (!visited[j]) dfs(j); }//if else {cycle=1; Print(j,j);} visited[v]=2; }//dfs

void find_cycle() //判断是否有回路,有则输出邻接矩阵。visited数组为全局变量。 {for (i=1;i<=n;i++) visited[i]=0;

for (i=1;i<=n;i++ ) if (!visited[i]) dfs(i); }//find_cycle

4、设有一个数组中存放了一个无序的关键序列K1、K2、?、Kn。现要求将Kn放在将元素排序后的正确位置上,试编写实现该功能的算法,要求比较关键字的次数不超过n。

51. 借助于快速排序的算法思想,在一组无序的记录中查找给定关键字值等于key的记录。设此组记录存放于数组r[l..h]中。若查找成功,则输出该记录在r数组中的位置及其值,否则显示“not find”信息。请编写出算法并简要说明算法思想。

5、题目中要求矩阵两行元素的平均值按递增顺序排序,由于每行元素个数相等,按平均值排列与按每行元素之和排列是一个意思。所以应先求出各行元素之和,放入一维数组中,然后选择一种排序方法,对该数组进行排序,注意在排序时若有元素移动,则与之相应的行中各元素也必须做相应变动。

void Translation(float *matrix,int n)

//本算法对n×n的矩阵matrix,通过行变换,使其各行元素的平均值按递增排列。 {int i,j,k,l;

float sum,min; //sum暂存各行元素之和 float *p, *pi, *pk; for(i=0; i

{sum=0.0; pk=matrix+i*n; //pk指向矩阵各行第1个元素.

for (j=0; j

for(i=0; i

for(j=i+1;j

{sum=*(pk+j); *(pk+j)=*(pi+j); *(pi+j)=sum;}

sum=p[i]; p[i]=p[k]; p[k]=sum; //交换一维数组中元素之和. }//if }//for i

free(p); //释放p数组. }// Translation

[算法分析] 算法中使用选择法排序,比较次数较多,但数据交换(移动)较少.若用其它排序方法,虽可减少比较次数,但数据移动会增多.算法时间复杂度为O(n2). 6、我们可用“破圈法”求解带权连通无向图的一棵最小代价生成树。所谓“破圈法”就是“任取一圈,去掉圈上权最大的边”,反复执行这一步骤,直到没有圈为止。请给出用“破圈法”求解给定的带权连通无向图的一棵最小代价生成树的详细算法,并用程序实现你所给出的算法。注:圈就是回路。

7、(1)p->rchild (2)p->lchild (3)p->lchild (4)ADDQ(Q,p->lchild) (5)ADDQ(Q,p->rchild)

25. (1)t->rchild!=null (2)t->rchild!=null (3)N0++ (4)count(t->lchild) (5)count(t->rchild)

26. .(1)top++ (2) stack[top]=p->rchild (3)top++ (4)stack[top]=p->lchild

27. (1)*ppos // 根结点(2)rpos=ipos (3)rpos–ipos (4)ipos (5)ppos+1

8、在有向图G中,如果r到G中的每个结点都有路径可达,则称结点r为G的根结点。编写一个算法完成下列功能: (1).建立有向图G的邻接表存储结构; (2).判断有向图G是否有根,若有,则打印出所有根结点的值。

9、给出折半查找的递归算法,并给出算法时间复杂度性分析。

10、设一棵二叉树的结点结构为 (LLINK,INFO,RLINK),ROOT为指向该二叉树根结点的指针,p和q分别为指向该二叉树中任意两个结点的指针,试编写一算法ANCESTOR(ROOT,p,q,r),该算法找到p和q的最近共同祖先结点r。

11、冒泡排序算法是把大的元素向上移(气泡的上浮),也可以把小的元素向下移(气泡的下沉)请给出上浮和下沉过程交替的冒泡排序算法。

48.有n个记录存储在带头结点的双向链表中,现用双向起泡排序法对其按上升序进行排序,请写出这种排序的算法。(注:双向起泡排序即相邻两趟排序向相反方向起泡)

12、二部图(bipartite graph) G=(V,E)是一个能将其结点集V分为两不相交子集V 1和V2=V-V1的无向图,使得:V1中的任何两个结点在图G中均不相邻,V2中的任何结点在图G中也均不相邻。 (1).请各举一个结点个数为5的二部图和非二部图的例子。 (2).请用C或PASCAL编写一个函数BIPARTITE判断一个连通无向图G是否是二部图,并分析程序的时间复杂度。设G用二维数组A来表示,大小为n*n(n为结点个数)。请在程序中加必要的注释。若有必要可直接利用堆栈或队列操作。【

13、设有一个数组中存放了一个无序的关键序列K1、K2、?、Kn。现要求将Kn放在将元素排序后的正确位置上,试编写实现该功能的算法,要求比较关键字的次数不超过n。

51. 借助于快速排序的算法思想,在一组无序的记录中查找给定关键字值等于key的记录。设此组记录存放于数组r[l..h]中。若查找成功,则输出该记录在r数组中的位置及其值,否则显示“not find”信息。请编写出算法并简要说明算法思想。

14、请设计一个算法,要求该算法把二叉树的叶子结点按从左到右的顺序连成一个单链表,表头指针为head。二叉树按二叉链表方式存储,链接时用叶子结点的右指针域来存放单链表指针。分析你的算法的时、空复杂度。

15、设一棵二叉树的结点结构为 (LLINK,INFO,RLINK),ROOT为指向该二叉树根结点的指针,p和q分别为指向该二叉树中任意两个结点的指针,试编写一算法ANCESTOR(ROOT,p,q,r),该算法找到p和q的最近共同祖先结点r。

搜索更多关于: 2012湖北省学习数据库入门 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

1、对一般二叉树,仅根据一个先序、中序、后序遍历,不能确定另一个遍历序列。但对于满二叉树,任一结点的左右子树均含有数量相等的结点,根据此性质,可将任一遍历序列转为另一遍历序列(即任一遍历序列均可确定一棵二叉树)。 void PreToPost(ElemType pre[] ,post[],int l1,h1,l2,h2) //将满二叉树的先序序列转为后序序列,l1,h1,l2,h2是序列初始和最后结点的下标。 {if(h1>=l1) {post[h2]=pre[l1]; //根结点 half=(h1-l1)/2; //左或右子树的结点数 PreToPost(pre,post,l1+1,l1+half,l2,l2+half-1) //将左子树先序序列转为后序序列 PreToPost(pre,post

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com