当前位置:首页 > 九年级数学相似三角形的性质及应用(教师版)知识点+典型例题+详细答案(良心出品必属精品)
.
相似三角形的性质及应用 【学习目标】
1、探索相似三角形的性质,能运用性质进行有关计算;
2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题). 【要点梳理】
要点一、相似三角形的性质
1.相似三角形的对应角相等,对应边的比相等. 2. 相似三角形中的重要线段的比等于相似比.
相似三角形对应高,对应中线,对应角平分线的比都等于相似比. 3. 相似三角形周长的比等于相似比
∽
,则
由比例性质可得:
4. 相似三角形面积的比等于相似比的平方
∽
,则
分别作出
与
的高
和,则
S△ABC?A?B?C?S△11BC?ADk?B?C??k?A?D??2?2=k2 11B?C??A?D?B?C??A?D?22
要点诠释:相似三角形的性质是通过比例线段的性质推证出来的. 要点二、相似三角形的应用 1.测量高度
测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.
要点诠释:测量旗杆的高度的几种方法:
.
1
.
平面镜测量法 影子测量法 手臂测量法 标杆测量法 2.测量距离
测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。 1.如甲图所示,通常可先测量图中的线段DC、BD、CE的距离(长度),根据相似三角形的性质,求出AB的长.
2.如乙图所示,可先测AC、DC及DE的长,再根据相似三角形的性质计算AB的长.
要点诠释:
1.比例尺:表示图上距离比实地距离缩小的程度,比例尺= 图上距离/ 实际距离;
2.太阳离我们非常遥远,因此可以把太阳光近似看成平行光线.在同一时刻,两物体影子之比等于其对应高的比;
3.视点:观察事物的着眼点(一般指观察者眼睛的位置); 4. 仰(俯)角:观察者向上(下)看时,视线与水平方向的夹角.
【典型例题】
类型一、相似三角形的性质
1. △ABC∽△DEF,若△ABC的边长分别为5cm、6cm、7cm,而4cm是△DEF中一边的长度,你能求出△DEF的另外两边的长度吗?试说明理由. 【答案】
设另两边长是xcm,ycm,且x<y.
(1)当△DEF中长4cm线段与△ABC中长5cm线段是对应边时,有
,
从而x=
cm,y=
cm.
(2)当△DEF中长4cm线段与△ABC中长6cm线段是对应边时,有
,
从而x=
cm,y=
cm.
(3)当△DEF中长4cm线段与△ABC中长7cm线段是对应边时,有
2 .
.
,
从而x=
cm,y=
cm.
cm,
cm或
cm,
cm
综上所述,△DEF的另外两边的长度应是或
cm,
cm三种可能.
2.如图所示,已知△ABC中,AD是高,矩形EFGH内接于△ABC中,且长边FG在BC上,矩形相邻两边的比为1:2,若BC=30cm,AD=10cm.求矩形EFGH的面积.
【答案】∵ 四边形EFGH是矩形,∴ EH∥BC, ∴ △AEH∽△ABC. ∵ AD⊥BC,
∴ AD⊥EH,MD=EF.
∵ 矩形两邻边之比为1:2, 设EF=xcm,则EH=2xcm.
由相似三角形对应高的比等于相似比,得∴ ∴ ∴
.
,
,
,
∴ EF=6cm,EH=12cm. ∴
举一反三
1、如图,在和中,,长是24,面积是48,求的周长和面积. 【答案】在和中,
, 又∵
∽
.
,,的周
. ,相似比为.
3
.
的周长为,的面积是 .
2、有同一三角形地块的甲、乙两地图,比例尺分别为1∶200和1∶500,求:甲地图与乙地图的相似比和面积比.
【答案】设原地块为△ABC,地块在甲图上为△A1B1C1,在乙图上为△A2B2C2. ∴ △ABC∽△A1B1C1∽△A2B2C2 且
,
,
∴,
∴.
3、如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于( )
A. 2:5 B.14:25 C.16:25 D. 4:21
【答案】B.
【解析】由已知可得AB=10,AD=BD=5,设AE=BE=x, 则CE=8-x, 在Rt△BCE中,x2-(8-x)2=62,x=
,
由△ADE∽△ACB得,
S△BCE:S△BDE=(64-25-25):25=14:25,所以选B.
4、在锐角△ABC中,AD,CE分别为BC,AB边上的高,△ABC和△BDE的面积分别等于18和2,DE=2,求AC边上的高.
4 .
共分享92篇相关文档