当前位置:首页 > 高效opencv编程入门
[编辑]
(1) 假设你要访问第k通道、第i行、第j列的像素。 [编辑]
(2) 间接访问: (通用,但效率低,可访问任意格式的图像)
? 对于单通道字节型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1); CvScalar s;
s=cvGet2D(img,i,j); // get the (j,i) pixel value, 注意cvGet2D与cvSet2D中坐标参数的顺序与其它opencv函数坐标参数顺序恰好相反.本函数中i代表y轴,即height;j代表x轴,即weight.
printf(\\\n\,s.val[0]); s.val[0]=111;
cvSet2D(img,i,j,s); // set the (j,i) pixel value
? 对于多通道字节型/浮点型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3); CvScalar s;
s=cvGet2D(img,i,j); // get the (i,j) pixel value
printf(\\\n\,s.val[0],s.val[1],s.val[2]); s.val[0]=111; s.val[1]=111; s.val[2]=111;
cvSet2D(img,i,j,s); // set the (i,j) pixel value [编辑]
(3) 直接访问: (效率高,但容易出错)
? 对于单通道字节型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1); ((uchar *)(img->imageData + i*img->widthStep))[j]=111;
? 对于多通道字节型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);
((uchar *)(img->imageData + i*img->widthStep))[j*img->nChannels + 0]=111; // B ((uchar *)(img->imageData + i*img->widthStep))[j*img->nChannels + 1]=112; // G ((uchar *)(img->imageData + i*img->widthStep))[j*img->nChannels + 2]=113; // R
? 对于多通道浮点型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
((float *)(img->imageData + i*img->widthStep))[j*img->nChannels + 0]=111; // B ((float *)(img->imageData + i*img->widthStep))[j*img->nChannels + 1]=112; // G ((float *)(img->imageData + i*img->widthStep))[j*img->nChannels + 2]=113; // R [编辑]
(4) 基于指针的直接访问: (简单高效)
? 对于单通道字节型图像:
IplImage* img = cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1); int height = img->height; int width = img->width;
int step = img->widthStep/sizeof(uchar); uchar* data = (uchar *)img->imageData; data[i*step+j] = 111;
? 对于多通道字节型图像:
IplImage* img = cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3); int height = img->height;
int width = img->width;
int step = img->widthStep/sizeof(uchar); int channels = img->nChannels;
uchar* data = (uchar *)img->imageData; data[i*step+j*channels+k] = 111;
? 对于多通道浮点型图像(假设图像数据采用4字节(32位)行对齐方式): IplImage* img = cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3); int height = img->height; int width = img->width;
int step = img->widthStep/sizeof(float); int channels = img->nChannels; float * data = (float *)img->imageData; data[i*step+j*channels+k] = 111; [编辑]
(5) 基于 c++ wrapper 的直接访问: (更简单高效)
? 首先定义一个 c++ wrapper ‘Image’,然后基于Image定义不同类型的图像: template
Image(IplImage* img=0) {imgp=img;} ~Image(){imgp=0;}
void operator=(IplImage* img) {imgp=img;} inline T* operator[](const int rowIndx) {
return ((T *)(imgp->imageData + rowIndx*imgp->widthStep));} };
typedef struct{ unsigned char b,g,r; } RgbPixel;
typedef struct{ float b,g,r; } RgbPixelFloat;
typedef Image
? 对于单通道字节型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1); BwImage imgA(img); imgA[i][j] = 111;
? 对于多通道字节型图像:
IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);
共分享92篇相关文档