当前位置:首页 > 北京师范大学附属实验中学2019-2020年第一学期初三年数学月考卷 word版含答案
在抛物线上.若n?2,则m的取值范围是__________.
三、解答题(本题共68分,第17-19,21-23题,每小题5分,第20,24-26题,每小题6分,第27,28题,每小题7分)
17、已知二次函数过点(0,3),且当x?1 时,函数有最大值4,求该二次函数解析式. 18、如图,△ABC在方格纸中
(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并写出B点坐标:
(2)以原点O为位似中心,位似比为2,在第一象限内将△ABC放大,画出放大后的图形
△A?B?C?.
19、已知:在△ABC中,∠ACB=90°,D是AB中点,过D作AB的垂线交CB于E,交AC的延长线于F,求证:CD2?DE?DF.
20、已知二次函数y?x?2x?3. (1)该二次函数的顶点坐标为_______; (2)该函数的图象与x轴交点坐标为_______;
2(3)用五点法画函数图象 x y … … … … (4)当?3?x?0时,则y的取值范围是______________;
(5)将该抛物线绕顶点旋转180°,所得函数的解析式为______________; (6)抛物线y?x?2x?3?k与x轴有且仅有一个交点,则k?______________.
2
21、数学课上老师提出了下面的问题: 在正方形ABCD对角线BD上取一点F,使
DF1?. DB5小明的做法如下:如图
①应用尺规作图作出边AD的中点M; ②应用尺规作图作出MD的中点E; ③连接EC,交BD于点F. 所以F点就是所求作的点.
请你判断小明的做法是否正确,若正确,请给出证明;若不正确,请给出种新的做法.
AC上一点,AE,DC的延长线相交22、已知:如图,AB是⊙O的直径,弦CD⊥AB,E是?于点F求证:?AED??CEF.
23、某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,如果每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球从发射出到第一次落在桌面的运行过程中,设乒乓球与端点A的水平距离为x(米),距桌面的高度为y(米),运行时间为t(秒),经多次测试后,得到如下部分数据:
t(秒) x(米) y(米) 0 0 0.25 0.16 0.4 0.378 0.2 0.5 0.4 0.4 1 0.45 0.6 1.5 0.4 0.64 1.6 0.378 0.8 2 0.25 … … …
(1)如果y是t的二次函数,
①如图,在平面直角坐标系tOy中,描出了上表中y与t各对对应值为坐标的点请你根据描出的点,画出该函数的图象;
②直接写出当t为何值时,乒乓球达到最大高度
(2)如果y是关于x的二次函数,那么乒乓球第一次落在桌面时,与端点A的水平距离是多少?
24、如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,在BC的延长线上取一点F,使得EF?DE. (1)求证:DF是⊙O的切线;
(2)连接AF交DE于点M,若AD?4,DE?5,求CE和EM的长.
25、在研究反比例函数y?
1
的图象与性质时,我们对函数解析式进行了深入分析. x
首先,确定自变量x的取值范围是全体非零实数,因此函数图象会被y轴分成两部分:其
1的值减小,且x11逐渐接近于零,随着x值的减小,的值会越来越大…,由此,可以大致画出y?在x?0xx次,分析解析式,得到y随κ的变化趋势:当x?0时,随着x值的増大,时的部分图象,如图所示:
共分享92篇相关文档