当前位置:首页 > 线性代数课后习题答案 复旦大学出版社 熊维玲
第一章
3.如果排列x1x2?xn是奇排列,则排列xnxn?1?x1的奇偶性如何?
解:排列xnxn?1?x1可以通过对排列x1x2?xn经过(n?1)?(n?2)?L?2?1?次邻换得到,每一次邻换都改变排列的奇偶性,故当奇排列,当
n(n?1)2n(n?1)为偶数时,排列xnxn?1?x1为2n(n?1)为奇数时,排列xnxn?1?x1为偶排列。 24. 写出4阶行列式的展开式中含元素a13且带负号的项.
ttt解:含元素a13的乘积项共有(?1)a13a22a31a44,(?1)a13a22a34a41,(?1)a13a21a32a44,
(?1)ta13a21a34a42,(?1)ta13a24a32a41,(?1)ta13a24a31a42六项,各项列标排列的逆序数分别
为t??(3214)?3,t??(3241)?4,t??(3124)?2,t??(3142)?3,t??(3421)?5,
t??(3412)?4, 故所求为?1a13a22a31a44,?1a13a21a34a42,?1a13a24a32a41。
005.按照行列式的定义,求行列式?n?10?????02?0010?00t00?的值. 0n解:根据行列式的定义,非零的乘积项只有(?1)a1,n?1a2,n?2Lan?1,1ann,
(n?1)(n?2),故行列式的值等于:
22xx121x1?1436. 根据行列式定义,分别写出行列式的展开式中含x的项和含x的项.
32x1111x其中t??[(n?1)(n?2)L21n]?t044解:展开式含x的乘积项为(?1)a11a22a33a44?(?1)2x?x?x?x?2x t133含x的乘积项为(?1)a12a21a33a44?(?1)x?1?x?x??x
8. 利用行列式的性质计算下列行列式:
r4?4r1r1?1023412341012?110r3?3r110 解: (1)
3412r1?(r2?r3?r4)341201?2?1r2?2r1412341230?3?2?112341111111111r4?3r2r3?r22
10111111012?1012?1r4?r310?10?1?1?(?4)?(?4)?16000?4000?41004?41002410?4124141
1
3?121?13210562c?cr?2r?0(第二行与第 (2) 1231123221320?3?50r2?r1506205620562四行相同)
a2abb2111112r?ar1?0b?a(3)2aa?b2br1?r3?2aa?b2b3r?2ar1111a2abb220ab?a212b?2a b2?a21?x (4)
111xx0011001 11111?x111?x111r3?r411?x11r1?r200x1?x11111?x1?x2x0011111?x11?x9.若
1234567800x300451234=0,求x.
15005678260015x4转置????4(5x?12) 解:
00x337x4263500454835 即有:?4(5x?12)?0?x?12 511. 利用行列式按行或列展开的方法计算下列行列式: 解: (2)
?(1?a)[(1?a)D2?aD1]?aD2?(1?a?a2)D2?a(1?a)D1,其中:
D2?1?a?1a1?a?(1?a)2?a?1?a?a2,D1?1?a?1?a.带入上式即可。
abccbddbcabddaac12. 设4阶行列式D4?,求A14?A24?A34?A44 .
abc1解:显然,行列式
cbd1dbc1按第四列展开,即得A14?A24?A34?A44。注意到该行列
abd1式的第四列与第一列元素成比例,其值为0,故A14?A24?A34?A44?0.
??x1?x2?x3?014. 当?、?取何值时,齐次线性方程组???x1??x2?x3?0 ?x1?2?x2?x3?0有非零解?
?11??11?2?0解:当系数行列式
D?1?1?0??0???11?2??12?112?10????(??1)?0时,齐次线性方程组有非零解,于是要求??1或??0
B
15.计算下列行列式:
1?aL111L1111L1(1)
11?a2L101?a11LLLL?011?a2L1(加边法) 11L1?aLLLn011L1?ann111L11??1a11L1?1a0i?1i10L??10a0?0a10L012LLLL00a2L0(第二列的a倍……第n?1列1?100LaLLLn000Lan的1na倍都加到第一列)按第一列展开(1??1)a1a2Lan ni?1ai (2)
xy0L000xyL00xyL0y0LDn?LLLLLL按第一列展开x?0xL0?y?(?1)n?1xyL000LxyLLLLy00L0x00Lx00L00y?xn?(?1)n?1yn
12(3) 2222L2L22?10222L2L2223LLLLL222L2c1?c20LLn0LLLLL23LLLL22L2展开?1?LLL22LnLLLLL222L3L22n
an(a?1)nan?1(a?1)n?1 (4) Dn?1?LLaa?11111(a?n)na?na?(n?1)(a?n)n?1?LLL(a?n)n?1[a?(n?1)]n?1a?n(a?n)n[a?(n?1)]n11aL an?1an记x1?a?n,x2?a?(n?1),Lxn?1?a,由范德蒙行列式的结论可知,Dn?1?1?j?i?n?(i?j).
第二章 矩阵
?111??123?????T1(本题为类似题).设A?11?1, B??1?24,求3AB?2A及AB.
?????1?11??051??????111??123??111???????解:3AB?2A?311?1?1?24?211?1 ???????1?11??051??1?11???????2(部分原题,部分类似题).计算下列乘积:
?431??7??1?23??2?(1)?????570??1??????3???; (2)?1,2,3?2???1????2?
?1??1,2; (3)?????3???
;
?131????2140??0?12?(4)???1?31?;
1?134????40?2???a11?(5)(x1,x2,x3)a12??a?13a12a22a23a13??x1??.
a23??x2????a33????x3??431??7??4?7?3?2?1?1??35?????????解:(1)1?232?1?7?(?2)?2?3?1?6 ?????????570??1??5?7?7?2?0?1??49?????????
共分享92篇相关文档