云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 精品解析:浙江省嘉兴市2018年中考数学试题(解析版)

精品解析:浙江省嘉兴市2018年中考数学试题(解析版)

  • 62 次阅读
  • 3 次下载
  • 2025/6/2 13:49:24

(3)如图2,∵直线而直线表达式为与直线,

交于点,与轴交于点,

解方程组,得.∴点,. ∵点在∴. 内,

当点,关于抛物线对称轴(直线,∴. )对称时,

且二次函数图象的开口向下,顶点在直线综上:①当②当③当时,时,时,; . ;

上,

【点评】考查一次函数图像上点的坐标特征,不等式,二次函数的性质等,注意数形结合思想和分类讨论思想在数学中的应用.

24. 我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。

(1)概念理解: 如图1,在中, ,.,试判断是否是“等高底”三角形,请说明理由.

(2)问题探究: 如图2, 直线是“等高底”三角形,于点.若点是是“等底”,作的值.

关于所在直线的对称图形得到,连结交的重心,求(3)应用拓展: 如图3,已知是的倍.将,与之间的距离为2.“等高底”绕点按顺时针方向旋转的“等底” 得到,在直线上,点在直线上,有一边的长所在直线交于点.求的值.

【答案】(1)证明见解析;(2)(3)的值为,,2 【解析】分析:(1)过点A作AD⊥直线CB于点D,可以得到AD=BC=3,即可得到结论;

(2)根据 ΔABC是“等高底”三角形,BC是“等底”,得到AD=BC, 再由 ΔA′BC与ΔABC关于直线BC对称, 得到 ∠ADC=90°,由重心的性质,得到BC=2BD.设BD=x,则AD=BC=2x, CD=3x ,由勾股定理得AC=x,即可得到结论;

BC时,再分两种情况讨论;

(3)分两种情况讨论即可:①当AB= ②当AC=BC时,再分两种情况讨论即可.

详解:(1)是.理由如下:

如图1,过点A作AD⊥直线CB于点D, ∴ΔADC为直角三角形,∠ADC=90°. ∵ ∠ACB=30°,AC=6,∴ AD=AC=3, ∴ AD=BC=3,

即ΔABC是“等高底”三角形.

(2)如图2, ∵ ΔABC是“等高底”三角形,BC是“等底”,∴AD=BC, ∵ ΔA′BC与ΔABC关于直线BC对称, ∴ ∠ADC=90°. ∵点B是ΔAA′C的重心, ∴ BC=2BD. 设BD=x,则AD=BC=2x,∴CD=3x , ∴由勾股定理得AC=∴.

x,

(3)①当AB=BC时,

Ⅰ.如图3,作AE⊥l1于点E, DF⊥AC于点F. ∵“等高底” ΔABC的“等底”为BC,l1//l2, l1与l2之间的距离为2, AB=∴BC=AE=2,AB=2,

. BC,

∴BE=2,即EC=4,∴AC= . ∵ ΔABC绕点C按顺时针方向旋转45°得到ΔA' B' C,∴∠CDF=45° 设DF=CF=x .

∵l1//l2,∴∠ACE=∠DAF,∴∴AC=3x=,可得x=,∴CD=x=,即AF=2x.

Ⅱ.如图4,此时ΔABC是等腰直角三角形,

∵ ΔABC绕点C按顺时针方向旋转45°得到ΔA' B' C, ∴ ΔACD是等腰直角三角形, ∴ CD=AC=.

②当AC=BC时,

Ⅰ.如图5,此时△ABC是等腰直角三角形.

∵ ΔABC绕点C按顺时针方向旋转45°得到ΔA′ B′C, ∴A′C⊥l1,∴CD=AB=BC=2.

Ⅱ.如图6,作AE⊥l1于点E,则AE=BC, ∴AC=BC=AE,∴∠ACE=45°,

∴ΔABC绕点C按顺时针方向旋转45°得到ΔA′ B′C时, 点A′在直线l1上,

∴A′C∥l2,即直线A′ C与l2无交点.

综上所述:CD的值为,,2.

点睛:本题是几何变换-旋转综合题.考查了重心的性质,勾股定理,旋转的性质以及阅读理解能力.解题的关键是对新概念“等高底”三角形的理解.

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

(3)如图2,∵直线而直线表达式为与直线, 交于点,与轴交于点, 解方程组,得.∴点,. ∵点在∴. 内, 当点,关于抛物线对称轴(直线,∴. )对称时, 且二次函数图象的开口向下,顶点在直线综上:①当②当③当时,时,时,; . ; 上, 【点评】考查一次函数图像上点的坐标特征,不等式,二次函数的性质等,注意数形结合思想和分类讨论思想在数学中的应用. 24. 我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。 (1)概念理解: 如图1,在中, ,.,试判断是否是“等高底”三角形,请说明理由. (2)问题探究: 如图2, 直线是“等高底”三角形,于点.若点是是“等底

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com