当前位置:首页 > 双闭环直流调速系统设计__本科毕业论文
图2-3三相变流桥路面板图
(4)三相正、反桥主电路
正桥主电路和反桥主电路分别由六只5A/1000V晶闸管组成;其中由VT1~VT6组成正桥元件(一般不可逆、可逆系统的正桥使用正桥元件);由VT1ˊ~VT6ˊ组成反桥元件(可逆系统的反桥以及需单个或几个晶闸管的实验可使用反桥元件);所有这些晶闸管元件均配置有阻容吸收及快速熔保险保护,此外正桥还设有接成三角形的压敏电阻,起过压吸收。
(5)平波电抗器
实验主回路中所使用的平波电抗器装在电源控制屏内,其各引出端通过12芯的插座连接到DJK02面板的中间位置,有3档电感量可供选择,分别为100mH、200mH、700mH(各档在1A电流下能保持线性),可根据实验需要选择合适的电感值。电抗器回路中串有3A保险保护,保险座装在电抗器旁。
(6)直流电压表及直流电流表
面板上装有?300V的镜面直流电压表、?2A的镜面直流电流表,均为中零式,精度为1.0级,为可逆调速系统提供电压及电流指示。
5 DJK02-1挂件(三相晶闸管触发电路)
该挂件装有三相触发电路和正反桥功放电路等,面板图如图2-4。
5
图2-4 DJK02-1三相触发电路面板图
(1)移相控制电压Uct输入及偏移电压Ub观测及调节
Uct及Ub用于控制触发电路的移相角,在一般的情况下,我们首先将Uct接地,调节Ub,以确定触发脉冲的初始位置;当初始触发角定下后,在以后的调节中只调节Uct的电压,这样确保移相角不会大于初始位置;如在逆变实验中初始移相角α=150°定下后,无论如何调节Uct,都能保证β > 30°,防止出现逆变颠覆的情况。
(2)触发脉冲指示
在触发脉冲指示处设有钮子开关用以控制触发电路,开关拨到左边,绿色发光管亮,在触发脉冲观察孔处可观测到后沿固定、而前沿可调的宽脉冲;开关拨到右边,红色发光管亮,触发电路产生互差60°的双窄脉冲。
(3)三相同步信号输入端
通过专用的10芯扁平线将DJK02上的“三相同步信号输出端”与DJK02-1“三相同步信号输入端”连接,为其内部的触发电路提供同步信号;同步信号也可以从其他地方提供,但要注意相序的问题。
(4)锯齿波斜率调节与观测孔
打开挂件的电源开关,同步信号经KC04集成触发电路,产生三路锯齿波信号,调节相应的斜率调节
6
电位器,可改变相应的锯齿波斜率,三路锯齿波斜率应保证基本相同,使六路触发信号保持同时出现,且双窄脉冲间隔基本一致。
图2-5 触发电路原理图
(5)控制电路
如图2-5所示,在KC04、KC41和KC42三相集成触发电路的基础上,又增加了4066、4069芯片,可
7
产生三相六路互差60°的双窄脉冲或三相六路后沿固定、前沿可调的宽脉冲链,供触发晶闸管使用。
在面板上设有三相同步信号观测孔、两路触发脉冲观测孔。VT1~VT6为单脉冲观测孔(在触发脉冲指示为“窄脉冲”)或宽脉冲观测孔(在触发脉冲指示为“宽脉冲”);VT1ˊ~VT6ˊ为双脉冲观测孔(在触发脉冲指示为“窄脉冲”)或宽脉冲观测孔(在触发脉冲指示为“宽脉冲”)。
三相同步电压信号从每个KC04的8脚输入,在其4脚形成线性增加的锯齿波,移相控制电压Uct和偏移电压Ub经叠加后,从9脚输入。当触发脉冲选择的钮子开关拨到窄脉冲侧时,通过控制4066(电子开关),使得每个KC04从1、15脚输出相位相差180°的单窄脉冲(可在上面的脉冲观测孔观测到),窄脉冲经KC41(六路双脉冲形成器)后,得到六路双窄脉冲(可在下面的脉冲观测孔观测到)。将钮子开关拨到宽脉冲侧时,通过控制4066,使得KC04的1、15脚输出宽脉冲,同时将KC41的使能端7脚接高电平,使KC41停止工作,宽脉冲则通过4066的3、9两脚直接输出。4069为反相器,它将部分控制信号反相以控制4066;KC42为调制信号发生器,对窄脉冲和宽脉冲进行高频调制。
(6)正、反桥功放电路
正、反桥功放电路的原理以正桥的一路为例,如图2-6所示;由触发电路输出的脉冲信号经功放电路中的V2、V3三极管放大后由脉冲变压器T1输出。Ulf即为DJK02面板上的Ulf ,接地才可使V3工作,脉冲变压器输出脉冲。反桥功放和正桥功放线路完全一致,只是使能端不一样,将Ulf改为Ulr。
图2-6 脉冲功率放大电路原理图
(7)正桥使能端Ulf、反桥使能端Ulr
这两个端子用于控制正反桥功放电路的工作与否,当端子与地短接,表示功放电路工作,触发电路产生的脉冲经功放电路从正反桥脉冲输出端输出;悬空表示功放不工作。Ulf控制正桥功放电路,Ulr控
8
共分享92篇相关文档