当前位置:首页 > 2011课程标准
(1)对于学生基础知识和基本技能达成情况的评价,必须准确把握内容标准中的要求。例如,对于一元二次方程根与系数关系的考查,内容标准中的要求是“了解”,并不要求应用这个关系解决其他问题,设计测试题目时应符合这个要求。
内容标准中的选学内容,不得列入考查(考试)范围。
对基础知识和基本技能的考查,要注重考查学生对其中所蕴涵的数学本质的理解,考查学生能否在具体情境中合理应用。因此,在设计试题时,应淡化特殊的解题技巧,不出偏题怪题。
(2)在设计试题时,应该关注并且体现本标准的设计思路中提出的几个核心词:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想,以及应用意识和创新意识。
(3)根据评价的目的合理地设计试题的类型,有效地发挥各种类型题目的功能。例如,为考查学生从具体情境中获取信息的能力,可以设计阅读分析的问题;为考查学生的探究能力,可以设计探索规律的问题;为考查学生解决问题的能力,可以设计具有实际背景的问题;为了考查学生的创造能力,可以设计开放性问题。
(4)在书面测验中,积极探索可以考察学生学习过程的试题,了解学生的学习过程。
三、教材编写建议
数学教材为学生的数学学习活动提供了学习主题、基本线索和知识结构,是实现数学课程目标、实施数学教学的重要资源。
数学教材的编写应以本标准为依据。教材所选择的学习素材应尽量与学生的生活现实、数学现实、其他学科现实相联系,应有利于加深学生对所要学习内容的数学理解。教材内容的呈现要体现数学知识的整体性,体现重要的数学知识和方法的产生、发展和应用过程;应引导学生进行自主探索与合作交流,并关注对学生人文精神的培养;教材的编写要有利于调动教师的主动性和积极性,有利于教师进行创造性教学。
内容标准是按照学段制订的,并未规定学习内容的呈现顺序。因此,教材可以在不违背数学知识逻辑关系的基础上,根据学生的数学学习认知规律、知识背景和活动经验,合理地安排学习内容,形成自己的编排体系,体现出自己的风格和特色。 1. 教材编写应体现科学性
科学性是对教材编写的基本要求。教材一方面要符合数学的学科特征,另一方面要符合学生的认知规律。
(1)全面体现本标准提出的理念和目标
教材的编写应以本标准为依据,在准确理解的基础上,全面体现和落实本标准提出的基本理念和各项目标。
(2)体现课程内容的数学实质
第25页
25
教材中学习素材的选择,图片、情境、实例与活动栏目等的设置,拓展内容的编写,以及其他课程资源的利用,都应当与所安排的数学内容有实质性联系,有利于提高学生对数学实质的理解,有利于提高学生对所学内容的兴趣。
(3)准确把握内容标准要求
本标准对于义务教育阶段的数学教学内容有明确和具体的目标要求,教材的编写应遵循学生的认知规律,准确地把握“过程目标”和“结果目标”要求的程度。例如,关于距离的概念,在第二学段要求“知道”两点间的距离,在第三学段要求“理解”两点间距离的意义,“能”度量两点间的距离。在编写相关内容时,一方面要把握好“知道”与“理解”“能”之间程度的差异,另一方面也要注意内容之间的衔接。
(4)教材的编写要有一定的实验依据
教材的内容、实例的设计、习题的配置等,要经过课堂教学的实践检验,特别是新增的内容要经过较大范围的实验,根据实践的结果推敲可行性,并不断改进与完善。 2. 教材编写应体现整体性
教材编写应当体现整体性,注重突出核心内容,注重内容之间的相互联系,注重体现学生学习的整体性。
(1)整体体现课程内容的核心
教材的整体设计要体现内容领域的核心。本标准在设计思路中提出了几个核心词:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想,以及应用意识和创新意识,它们是义务教育阶段数学课程内容的核心,也是教材的主线。因此,教材应当围绕这些核心内容进行整体设计和编排。
例如,在方程、不等式和函数的各部分内容编排中,应整体考虑模型思想的体现,突出建立模型、求解模型的过程。
再例如,推理能力包括合情推理和演绎推理,无论是“数与代数”“图形与几何”还是“统计与概率”的内容编排中,都要尽可能地为学生提供观察、操作、归纳、类比、猜测、证明的机会,发展学生的推理能力。
(2)整体考虑知识之间的关联
教材的整体设计要呈现不同数学知识之间的关联。一些数学知识之间存在逻辑顺序,教材编写应有利于学生感悟这种顺序。一些知识之间存在着实质性的联系,这种联系体现在相同的内容领域,也体现在不同的内容领域。例如,在“数与代数”的领域内,函数、方程、 不等式之间均存在着实质性联系;此外,代数与几何、统计之间也存在着一定的实质性联系。
第26页
26
帮助学生理解类似的实质性联系,是数学教学的重要任务。为此,教材在内容的素材选取、问题设计和编排体系等方面应体现这些实质性联系,展示数学知识的整体性和数学方法的一般性。
(3)重要的数学概念与数学思想要体现螺旋上升的原则
数学中有一些重要内容、方法、思想是需要学生经历较长的认识过程,逐步理解和掌握的,如,分数、函数、概率、数形结合、逻辑推理、模型思想等。因此,教材在呈现相应的数学内容与思想方法时,应根据学生的年龄特征与知识积累,在遵循科学性的前提下,采用逐级递进、螺旋上升的原则。螺旋上升是指在深度、广度等方面都要有实质性的变化,即体现出明显的阶段性要求。
例如,函数是“数与代数”的重要内容,也是义务教育阶段学生比较难理解和掌握的数学概念之一,本标准在三个学段中均安排了与函数关联的内容目标,希望学生能够逐渐加深对函数的理解。因此,教材对函数内容的编排应体现螺旋上升的原则,分阶段逐渐深化。依据内容标准的要求,教材可以将函数内容的学习分为三个主要阶段:
第一阶段,通过一些具体实例,让学生感受数量的变化过程、以及变化过程中变量之间的对应关系,探索其中的变化规律及基本性质,尝试根据变量的对应关系作出预测,获得函数的感性认识。
第二阶段,在感性认识的基础上,归纳概括出函数的定义,并研究具体的函数及其性质,了解研究函数的基本方法,借助函数的知识和方法解决问题等,使得学生能够在操作层面认识和理解函数。
第三阶段,了解函数与其他相关数学内容之间的联系(例如,与方程之间、不等式之间的联系),使得学生能够一般性地了解函数的概念。
(4)整体性体现还应注意以下几点
配置习题时应考虑其与相应内容之间的协调性。一方面,要保证配备必要的习题帮助学生巩固、理解所学知识内容;另一方面,又要避免配置的习题所涉及的知识超出相应的内容要求。
教材内容的呈现既要考虑不同年龄学生的特点,又要使整套教材的编写体例、风格协调一致。 数学文化作为教材的组成部分,应渗透在整套教材中。为此,教材可以适时地介绍有关背景知识,包括数学在自然与社会中的应用、以及数学发展史的有关材料,帮助学生了解在人类文明发展中数学的作用,激发学习数学的兴趣,感受数学家治学的严谨,欣赏数学的优美。例如,可以介绍《九章算术》、珠算、《几何原本》、机器证明、黄金分割、CT技术、布丰投针等。 3. 教材内容的呈现应体现过程性
教材编写不是单纯的知识介绍,学生学习也不是单纯地模仿、练习和记忆。因此,教材应选用合适的学习素材,介绍知识的背景;设计必要的数学活动,让学生通过观察、实验、猜测、推理、交流、反思等,感悟知识的形成和应用。恰当地让学生经历这样的过程,对于他们理解数学知识与方法、形成良好的数学思维习惯和应用意识,提高解决问题的能力有着重要的作用。
第27页
27
(1)体现数学知识的形成过程
在设计一些新知识的学习活动时,教材可以展现“知识背景—知识形成—揭示联系”的过程。这个过程要有利于激发学习兴趣,理解数学实质,发展思考能力,了解知识之间的关联。例如,分数、负数和无理数的引入都可以体现这样的过程。
(2)反映数学知识的应用过程
教材应当根据课程内容,设计运用数学知识解决问题的活动。这样的活动应体现“问题情境─建立模型─求解验证”的过程,这个过程要有利于理解和掌握相关的知识技能,感悟数学思想、积累活动经验;要有利于提高发现和提出问题的能力、分析和解决问题的能力,增强应用意识和创新意识。
每一册教材至少应当设计一个适用于“综合与实践”学习活动的题材,这样的题材可以以“长作业”的形式出现,将课堂内的数学活动延伸到课堂外,经历收集数据、查阅资料、独立思考、合作交流、实践检验、推理论证等多种形式的活动。提倡在教材中设计更为丰富的“综合与实践”活动题材,供教师选择。 4. 呈现内容的素材应贴近学生现实
素材的选用应当充分考虑学生的认知水平和活动经验。这些素材应当在反映数学本质的前提下尽可能地贴近学生的现实,以利于他们经历从现实情境中抽象出数学知识与方法的过程。学生的现实主要包含以下三个方面:
(1)生活现实
在义务教育阶段的数学课程中,许多内容都可以在学生的生活实际中找到背景。
第一学段,学生所感知的生活面较窄,从他们身边熟悉的、有趣的事物中选取学习素材,容易激发他们学习数学的兴趣,使他们感受到数学就在自己的身边,也易于他们理解相关的数学知识,体会到数学的作用。
第二学段、第三学段,学生的活动空间有了较大的扩展,他们感兴趣的问题已拓展到客观世界的许多方面,他们逐渐关注来源于自然、社会中更为广泛的现象和问题,对具有一定挑战性的内容表现出更大的兴趣。因此,教材所选择的素材应尽量来源于自然、社会中的现象和问题。如与现实生活有关的图片和图形(照片、简单的模型图、平面图、地图等),以使学生感受到数学的价值和趣味。
(2)数学现实
随着数学学习的深入,学生所积累的数学知识和方法就成为学生的“数学现实”,这些现实应当成为学生进一步学习数学的素材。选用这些素材,不仅有利于学生理解所学知识的内涵,还能够更好地揭示相关数学知识之间的内在关联,有利于学生从整体上理解数学,构建数学认知结构。例如,因式分解知识的引入可以借助整数的分解,平行四边形概念的引入可以借助三角形,等等。
(3)其他学科现实
第28页
28
共分享92篇相关文档