当前位置:首页 > 染色问题(B)六年级奥数题之专题串讲试题(附答案)2013
从任意一点,不妨设从A向其他16点A1,A2,?A16共可连成16条线段,用三种颜色染色,由抽屉原则可知,必有6条线段同色.设这6条线段为AA1,AA2,?AA6且同为红色.
考虑A1,A2,A3,A4,A5,A6这六点之间的连线,若有一条为红色,(如A1A2为红色) ,则三角形AA1A2为红色的同色三角形.
A1 A2
A3
A
A4
A5
A6
若这六点之间的连线中,没有一条是红色的,则它们之间只能涂两种颜色.考虑从A1引出的五条线段A1A2 A1A3 A1A4 A1A5 A1A6,由抽屉原理知,其中必有三条是同色的.不妨设这三条为A1A2 A1A3 A1A4,且同为蓝色.若三角形A2A3A4的三边中有一条为蓝色的,则有一个蓝色的三角形存在;若三角形A2A3A4三边都不是蓝色的,则它的三边是同为第三色的同色三角形.
A2
A3
A1 A4
12. 把正方体木箱分成27个小正方体,每个小正方体的体积为2?2?2=8.将这些正方体如右图黑白相间染上色.显然黑色2?2?2的正方体有14个,白色2?2?2小正方体有13个.每一个这样的正方体相当于8个1?1?1的小正方体.
将1?2?4的长方体放入木箱,无论怎么放,每个长方体木块盖住8个边长为1的单位正方体,其中有4个黑色的,4个白色的.木箱共含6?6?6=216个单位正方体,26个长方体木块共盖住8?26=208个单位正方体,其中黑白各占104个,余下216-208=8个单位正方体是黑色的.但是第27个1?2?4长方体木块不管怎样放,也无法盖住这8个黑色单位正方体.
13. 如图,将整个棋盘的每一格都分别染上红、白、黑三种颜色,这种染色方式将棋盘分成了三个部分.按照游戏规则,每走一步,有两种颜色方格中的棋子数分别减少了1个,而第三种颜色的棋子数增加了一个.这表明每走一步,每个部分的棋子的奇偶性要发生改变.
5
因为一开始时,81枚棋子摆成一个9?9的正方形,显然三个部分的棋子数是相同的,从而每走一步,三部分中的棋子数的奇偶性是相同的.如果走了若干步以后,棋盘上恰好剩下一枚棋子,则两部分上的棋子数为偶数,而另一部分上的棋子数为奇数.这种结果是不可能出现的.
14. 用两种方法对超级棋盘染色.
首先,将棋盘黑白相间染色,则马每跳一步,它所在的方格就要改变一次颜色.不妨设第奇数步跳入白格.
其次,将棋盘的第3,4,5及8,9,10这六行染成黑色,其余六行染成白色.在此种染色方式下,马从白格一定跳入黑格.又因黑白格总数相同,马要遍历每一格恰一次又回到出发点,因此,马从黑格只能跳入白格而不能跳入黑格.不妨设马第奇数步跳入白格.
但是对于一种满足要求跳法,在两种染色方式下第奇数步跳入的格子的全体是不同的,这显然是不可能的,故题目要求的跳法是不存在的.
6
共分享92篇相关文档