ǰλãҳ > 有理曲线多项式逼近的新方法 - 百度文库
ƱҵϵУںⱨ桢ҵ)
ҵĿⱨ
Ϣѧ
ʽ߱ƽ·
һѡı
CAGDƣһѸٷչѧƣĺҪҵƷ״ѧijֺͷչִҵչҪֶڹҵķչ˾ĴٽáʹѧӴͳʱֻϢʱߡ棩CAGDƣѧռҪĵλй㷺ҪӦãΪǽܣΪCAGDĽһչ춨˼ʵ
ڼŹ㷺ҪӦãȽ϶ʽߵʽϸӣֺͻֵʽöʽƽߵҪۺʵ壬ѵõ㷺о
BzieDzʽߣһصĶʽʹʣʽIJʽжһģһܵҵCAGDѧĹ㷺ӣCAGD֮һǶжӡBzierʵбֳǿ
оʽBzier߱ƽBzierߵķ磺û϶ʽƽо߿ƵƶΧöʽƽߵоBzierߵı߽硢ĻϱʽHermite ʽƽBzierߣоʽƽߵHermite ʽƽBzierߵĵݹ鷽ԼͨõͽĶʽֵߵȡ
⣬Bzier߿ԲףӶõһƶУǶͬһBzierߡнһޣBzierߡ˿ͨķʹBzierһʽBzierߡ磺ο[7]ᵽķһBzierߣĿƵ㹹BzierߵĿƵ㣬óBzierеr
ƱҵϵУںⱨ桢ҵ)
һӦԭBzierߵr
Щص㣬ԼóϣǹһȻֵƺĽĵطҽоĻϣһµBzierߣʵ¹ĶʽBzier߱ƽԭBzierߣеоȣֱԣֱӣҽ߱ƽȣڼӦõʵ֡
оĻҪ
1.öʽ߱ƽߵı壬зȱ㣻 2.öʽ߱ƽߵһ·ʵ
µBzierƽBzierߡݲο[7]һBzierߣĿƵ㹹BzierߵĿƵ㣬óBzierеrһӦԭBzierߵr,BzierߵĿƵΪ{Pr}ݲο[7]е1(See Farin, 1999.) Bzier
Rn(t)??wi?0ni?0ni,ni,nPBi,n(t)Bi,n(t)ףĿƵ{Pi,n}һ
?wi,ni{R()} {Pr}{R(i)}ϹµĿƵ㣬ЩԱ仯ĿƵΪ
nnʽBzierߵĿƵ㣬ԴʵֿоĿģùĶʽBzier߱ƽBzierߡ
оķ뼼·
1Ը¿ƶĽʽʹֱ۵ļηͨķıԭBzier
ߵĿƵȨֵԲο[7]ΪݣµĶʽBzierߵĿƵ㡣ʵ
öʽBzier߱ƽBzierߡ
2߱ƽȡBzierʵĻϣƶBzierߵĿƵ㣬ƽBzier ߣʹñƽС
3ʵ˵Ŀɲԡ
ѡ4ס5ס6Bzier߱ƽͬBzierߣԴ˵ùµĶʽBzier߱ƽԭBzierߵЧԺͿԡ
4ô㷨ͽгֵ⣬߱ƽȡ
ƱҵϵУںⱨ桢ҵ)
١BzierʵĻϣƶBzierߵĿƵ㣬ƽķ ڡƽľȵ㷨
ġо尲
1. 2010-2011һѧ 13ܣѡ⡢֤ᡣ
14 ܣͿⱨġ 15-19ܣռϣύоܡ 2. 2010-2011ڶѧ
1-7ܣύҵijָʦģġ 8ܣҵĶ壬زϵдװɲᡣ 9-11ܣҵϽ졣 12ܣμӱҵĴ硣
塢Ҫο
[1] ,,֣,.:ߵȽ,2001.36-46. [2] ЧȺ,·,³.ߵĶʽƽ[J].УӦѧѧAİ棩,1998,(S1).
[3] ٻ,.Bezierߵı߽[J]. УӦѧѧAİ棩,1998,(S1). [4] ЧȺ,¦ƽ.ߵBezierߵıƽ[J].йѧѧѧ,2001,(04). [5] ,ʺ.Bezierıƽ[J].ֵӦã2003,(04). [6] Thomas W. Sederberg ,Masanori Kakimoto, Approximating rational curves using polynomial curves, in NURBS for Curve and Surface Design, G. Farin, ed., SIAM, Philadelphia, 1991, pp. 149--158.
[7] Huang Youdu ,Su Huaming ,Lin Hongwei, A simple method for approximating rational curves using Bezier curves, Computer Aided Geometric Design, Volume 25, Issue 8, November 2008, Pages 697-699.
ƱҵϵУںⱨ桢ҵ)
ҵ
Ϣѧ
ʽ߱ƽ·
CAGDƣһѸٷչѧƣĺҪҵƷ״ѧijֺͷչִҵչҪֶڹҵķչ˾ĴٽáʹѧӴͳʱֻϢʱߡ棩CAGDƣѧռҪĵλй㷺ҪӦãΪǽܣΪCAGDĽһչ춨˼ʵ
ڼŹ㷺ҪӦãȽ϶ʽߵʽϸӣֺͻֵʽöʽƽߵҪۺʵ壬ѵõ㷺о
BzieDzʽߣһصĶʽʹʣʽIJʽжһģһܵҵCAGDѧĹ㷺ӣCAGD֮һǶжӡBzierʵбֳǿ
оʽBzier߱ƽBzierߵķ磺û϶ʽƽо߿ƵƶΧöʽƽߵоBzierߵı߽硢ĻϱʽHermite ʽƽBzierߣоʽƽߵHermite ʽƽBzierߵĵݹ鷽ԼͨõͽĶʽֵߵȡ
⣬Bzier߿ԲףӶõһƶУǶͬһBzierߡнһޣBzierߡ˿ͨķʹBzierһ
92ƪĵ