当前位置:首页 > 2017年中考数学专题复习三:方程与函数
专题三:方程与函数
【问题解析】
数学与人类发展和社会进步息息相关,数学来源于生活,又服务于生活,解决生活中的一些实际问题,往往离不开数学建模,方程与函数是常用的数学建模,中考在解答题中常考列方程(组)解应用题和由实际问题建立函数解析式,利用函数的性质解决问题.列方程(组)在解应用题时,关键是分析题中已知量和未知量之间的关系,寻找题目中的等量关系,从而设出未知量,列出方程(组).建立函数模型来解决问题,关键弄清问题中变量之间关系,属于哪种函数模型,用待定系数法求出函数解析式后,利用函数性质解答.
【热点探究】
类型一:一次方程为主的应用题
【例题1】(2016·江西·8分)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.
(1)请直接写出第5节套管的长度;
(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.
【考点】一元一次方程的应用.
【分析】(1)根据“第n节套管的长度=第1节套管的长度﹣4×(n﹣1)”,代入数据即可得出结论;
(2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm,根据“鱼竿长度=每节套管长度相加﹣(10﹣1)×相邻两节套管间的长度”,得出关于x的一元一次方程,解方程即可得出结论.
【解答】解:(1)第5节套管的长度为:50﹣4×(5﹣1)=34(cm). (2)第10节套管的长度为:50﹣4×(10﹣1)=14(cm), 设每相邻两节套管间重叠的长度为xcm, 根据题意得:(50+46+42+?+14)﹣9x=311, 即:320﹣9x=311, 解得:x=1.
答:每相邻两节套管间重叠的长度为1cm. 【同步练】
(2016海南)世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.
类型二:二次方程为主的应用题
【例题2】(2016·青海西宁·10分)青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.
(1)请问每个站点的造价和公共自行车的单价分别是多少万元?
(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率. 【考点】一元二次方程的应用;二元一次方程组的应用.
【分析】(1)分别利用投资了112万元,建成40个公共自行车站点、配置720辆公共自行车以及投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车进而得出等式求出答案;
(2)利用2016年配置720辆公共自行车,结合增长率为x,进而表示出2018年配置公共自行车数量,得出等式求出答案.
【解答】解:(1)设每个站点造价x万元,自行车单价为y万元.根据题意可得:
解得:
答:每个站点造价为1万元,自行车单价为0.1万元.
(2)设2016年到2018年市政府配置公共自行车数量的年平均增长率为a. 根据题意可得:720(1+a)2=2205 解此方程:(1+a)2=即:
,
,
(不符合题意,舍去)
答:2016年到2018年市政府配置公共自行车数量的年平均增长率为75%. 【同步练】
(2016·广西百色·10分)在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m.
(1)求这地面矩形的长;
(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?
类型三:分式方程为主的应用题
【例题3】(2016·广西桂林·8分)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同
(1)求甲、乙两种救灾物品每件的价格各是多少元?
(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?
2
【考点】分式方程的应用;一元一次方程的应用.
【分析】(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同
列出方程,求解即可;
(2)设甲种物品件数为m件,则乙种物品件数为3m件,根据该爱心组织按照此需求的比例购买这2000件物品列出方程,求解即可.
【解答】解:(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元, 根据题意得, 350x?10解得:x=60.
经检验,x=60是原方程的解.
答:甲、乙两种救灾物品每件的价格各是70元、60元;
(2)设甲种物品件数为m件,则乙种物品件数为3m件, 根据题意得,m+3m=2000, 解得m=500,
即甲种物品件数为500件,则乙种物品件数为1500件,此时需筹集资金:70×500+60×1500=125000(元).
答:若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金125000元. 【同步练】
(烟台市 2014 中考 -23)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.
(1)今年A型车每辆售价多少元?(用列方程的方法解答)
(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?
A,B两种型号车的进货和销售价格如下表: 进货价格(元) A型车 1100 B型车 1400
?300x
共分享92篇相关文档