云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 立体几何存在性问题

立体几何存在性问题

  • 62 次阅读
  • 3 次下载
  • 2025/6/13 18:35:53

立体几何存在性问题

立体几何中的存在性问题

1、如图,已知直三棱柱ABC?A1B1C1,?ACB?90o,E就是棱CC1上动点,F就是AB中点 ,AC?BC?2,AA1?4、

(Ⅰ)求证:CF?平面ABB1;

(Ⅱ)当E就是棱CC1中点时,求证:CF∥平面AEB1;

(Ⅲ)在棱CC1上就是否存在点E,使得二面角A?EB1?B

的大小就是45o,若存在,求CE的长,若不存在,请 说明理由、

2、如图,在底面就是正方形的四棱锥P-ABCD中,PA?面ABCD,BD交AC于点E,F就

是PC中点,G为AC上一点。 (Ⅰ)求证:BD?FG;

(Ⅱ)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由;

(Ⅲ)当二面角B-PC-D的大小为

2?时,求PC与底面ABCD所成角的正切值。 33、在四棱锥P?ABCD中,侧面PCD?底面

PABCD,PD?CD,E为PC中点,底面ABCD就是直角梯

形,AB//CD,?ADC?90o,AB?AD?PD?1,CD?2、

(Ⅰ)求证:BE//平面PAD; (Ⅱ)求证:BC?平面PBD;

BAEGCFDuuuruuurPQ??PC(Ⅲ)设Q为侧棱PC上一点,,试确定?的值,使得二面角Q?BD?P为45o

4、如图,三棱柱ABC?A1B1C1中,侧面AA1C1C?底面

?AC?2,AB?BC, ABC,AA1?AC1且AB?BC,O为AC中点、 (Ⅰ)证明:A1O?平面ABC;

P E D A C B 立体几何存在性问题

(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;

(Ⅲ)在BC1上就是否存在一点E,使得OE//平面A1AB,若不存在,说明理由;若存在,确

定点E的位置、

A1C15、如图,棱锥P—ABCD的底面ABCD就是矩B1形,PA⊥平面ABCD,PA=AD=2,BD=22、 (Ⅰ)求证:BD?平面PAC; AOC(Ⅱ)求二面角B?PD?C的余弦值; B(III)在线段PD上就是否存在一点Q,使

CQ与平面PBD所成的角的正弦值为

269,若存在,指出点Q的位置,若不存在,说明理由、

P 6、如图,四棱锥

P?ABCD中,AB?AD,CD?AD,PA?底面ABCD,

A D PA?AD?CD?2AB?2,M为PC的中点、

B

C (1)求证:BMP平面PAD;

(2)在侧面PAD内找一点N,使MN?平面PBD

7、如图,三棱柱ABC—A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点、 (Ⅰ)求证:AB1//面BDC1;

(Ⅱ)在侧棱AA1上就是否存在点P,使得

CP⊥面BDC1?并证明您的结论、

8、 如图,四棱锥P—ABCD中,AB⊥AD,CD⊥AD,PA⊥底面ABCD,PA = AD = CD = 2AB = 2,M为PC的中点、 (1)求证:BM∥平面PAD;

立体几何存在性问题

(2)平面PAD内就是否存在一点N,使MN⊥平面PBD? 若存在,确定N的位置,若不存在,说明理由;

9、直三棱柱A1B1C1—ABC的三视图如图所示,D、E分别为棱CC1与B1C1的中点。 (1)求点B到平面A1C1CA的距离;

(2)在AC上就是否存在一点F,使EF⊥平面A1BD,若存在确定其位置,若不存在,说明理

由、

10、如图,在四棱锥P?ABCD中,底面ABCD为直角梯形,且

AD//BC,?ABC??PAD?90?,侧面PAD?底面ABCD、 若

1PA?AB?BC?AD、

2(Ⅰ)求证:CD?平面PAC;

(Ⅱ)侧棱PA上就是否存在点E,使得BE//平面PCD?若存在,指出点E 的位置并证明,若不存在,请说明理由;

P 11、如图,在直三棱柱ABC?A1B1C1中,AC?3,BC?4,AB?5,AA1?4、 A (Ⅰ)求证:AC?BC1;(Ⅱ)在AB上就是否存在点D,使得AC1∥平面CDB1,若存在,试给D 出证明;若不存在,请说明理由、

12、如图,三棱柱ABC?A1B1C1中,侧面AA1C1C?底面ABC,

AA1?AC?AC?2,AB?BC,且AB?BC,O为AC中1B C1C B1A1点、 ①

证明:A1O?平面ABC;

AC1B1CB(2)在BC1上就是否存在一点E,使得OE//平面A1AB,在,说明理由;若存在,确定点E的位置、

A1若不存立体几何存在性问题

13、已知某几何体的直观图与三视图如下图所示, 其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形、 (I)证明:BN⊥平面C1B1N;

(II)M为AB中点,在线段CB上就是否存在一点P,使得MP∥平面CNB1,若存在,求出BP的长;若不存在,请说明理由、

CC14BMANB14正视图8左视图4俯视图

14、如图:在四棱锥P?ABCD中,底面ABCD就是菱形,

?ABC?60?,PA?平面ABCD,点M,N分别为BC,PA的中点,且PA?AB?2、

(1)证明:BC⊥平面AMN;(2)求三棱锥N?AMC的体积;

(3)在线段PD上就是否存在一点E,使得NM//平面ACE;若存在,求出PE的长;若不存在,说明理由、

15、已知菱形ABCD中,AB=4,

P N A ?BAD?60o(如图1所示),将菱形ABCD线BD翻折,使点C翻折到点C1的位置(如示),点E,F,M分别就是AB,DC1,BC1的中点. B (Ⅰ)证明:BD //平面EMF; (Ⅱ)证明:AC1?BD;

AD 沿对角

D

图2所

C1FMDM DC C(Ⅲ)当EF?AB时,求线段AC1 的长. 图1

BAEB图2

搜索更多关于: 立体几何存在性问题 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

立体几何存在性问题 立体几何中的存在性问题 1、如图,已知直三棱柱ABC?A1B1C1,?ACB?90o,E就是棱CC1上动点,F就是AB中点 ,AC?BC?2,AA1?4、 (Ⅰ)求证:CF?平面ABB1; (Ⅱ)当E就是棱CC1中点时,求证:CF∥平面AEB1; (Ⅲ)在棱CC1上就是否存在点E,使得二面角A?EB1?B 的大小就是45o,若存在,求CE的长,若不存在,请 说明理由、 2、如图,在底面就是正方形的四棱锥P-ABCD中,PA?面ABCD,BD交AC于点E,F就是PC中点,G为AC上一点。 (Ⅰ)求证:BD?FG; (Ⅱ)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由; (Ⅲ)当二面角B-PC-D的大小为<

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com