当前位置:首页 > 2018年中考数学试题分类汇编解析(32)尺规作图
【分析】(1)①作线段OB的垂直平分线AC,满足条件,②作矩形OA′BC′,直线A′C′,满足条件;
(2)分两种情形分别求解即可解决问题; 【解答】(1)解:如图△ABC即为所求;
(2)解:这样的直线不唯一.
①作线段OB的垂直平分线AC,满足条件,此时直线的解析式为y=﹣x+
.
②作矩形OA′BC′,直线A′C′,满足条件,此时直线A′C′的解析式为y=﹣x+4.
28.(2018?孝感)如图,△ABC中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:
①作∠BAC的平分线AM交BC于点D;
②作边AB的垂直平分线EF,EF与AM相交于点P; ③连接PB,PC.
请你观察图形解答下列问题:
(1)线段PA,PB,PC之间的数量关系是 PA=PB=PC ; (2)若∠ABC=70°,求∠BPC的度数.
【分析】(1)根据线段的垂直平分线的性质可得:PA=PB=PC;
(2)根据等腰三角形的性质得:∠ABC=∠ACB=70°,由三角形的内角和得:∠BAC=180°﹣2×70°=40°,由角平分线定义得:∠BAD=∠CAD=20°,最后利用三角形外角的性质可得结论.
【解答】解:(1)如图,PA=PB=PC,理由是: ∵AB=AC,AM平分∠BAC, ∴AD是BC的垂直平分线, ∴PB=PC,
∵EP是AB的垂直平分线, ∴PA=PB, ∴PA=PB=PC;
故答案为:PA=PB=PC;
(2)∵AB=AC, ∴∠ABC=∠ACB=70°, ∴∠BAC=180°﹣2×70°=40°, ∵AM平分∠BAC, ∴∠BAD=∠CAD=20°, ∵PA=PB=PC,
∴∠ABP=∠BAP=∠ACP=20°,
∴∠BPC=∠ABP+∠BAC+∠ACP=20°+40°+20°=80°.
29.(2018?深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE
中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD. (1)求证:四边形ACDB为△FEC的亲密菱形; (2)求四边形ACDB的面积.
【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;
(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.
【解答】(1)证明:∵由已知得:AC=CD,AB=DB, 由已知尺规作图痕迹得:BC是∠FCE的角平分线, ∴∠ACB=∠DCB, 又∵AB∥CD, ∴∠ABC=∠DCB, ∴∠ACB=∠ABC, ∴AC=AB,
又∵AC=CD,AB=DB,
∴AC=CD=DB=BA∴四边形ACDB是菱形,
∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上, ∴四边形ACDB为△FEC的亲密菱形;
(2)解:设菱形ACDB的边长为x, ∵四边形ABCD是菱形, ∴AB∥CE,
∴∠FAB=∠FCE,∠FBA=∠E, △EAB∽△FCE
则:即
, ,
解得:x=4,
过A点作AH⊥CD于H点,
∵在Rt△ACH中,∠ACH=45°, ∴
,
.
∴四边形ACDB的面积为:
30.(2018?贵港)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.
【分析】根据作一个角等于已知角,线段截取以及垂线的尺规作法即可求出答案.
【解答】解:如图所示,
△ABC为所求作
31.(2018?江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹). (1)在图1中,画出△ABD的BD边上的中线;
共分享92篇相关文档