云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 初中数学几何辅助线作法大全及专题训练(含答案)

初中数学几何辅助线作法大全及专题训练(含答案)

  • 62 次阅读
  • 3 次下载
  • 2025/6/13 18:29:42

三角形中作辅助线的常用方法

一、在利用三角形三边关系证明线段不等关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:

例1:已知如图1-1:D、E为△ABC内两点,求证:AB+AC>BD+DE+CE. 证明:(法一)将DE两边延长分别交AB、AC 于M、N,

在△AMN中,AM+AN > MD+DE+NE;(1) 在△BDM中,MB+MD>BD; (2) 在△CEN中,CN+NE>CE; (3) 由(1)+(2)+(3)得:

AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE ∴AB+AC>BD+DE+EC

AMBDEGNCAFECDB图1?1图1?2(法二:)如图1-2, 延长BD交 AC于F,延长CE交BF于G,

在△ABF和△GFC和△GDE中有:

AB+AF> BD+DG+GF (三角形两边之和大于第三边)(1) GF+FC>GE+CE(同上)………………………………(2) DG+GE>DE(同上)……………………………………(3) 由(1)+(2)+(3)得:

AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE

∴AB+AC>BD+DE+EC。

二、在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:

例如:如图2-1:已知D为△ABC内的任一点,求证:∠BDC>∠BAC。 分析:因为∠BDC与∠BAC不在同一个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC处于在外角的位置,∠BAC处于在内角的位置;

证法一:延长BD交AC于点E,这时∠BDC是△EDC的外角, ∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC 证法二:连接AD,并延长交BC于F

∵∠BDF是△ABD的外角

∴∠BDF>∠BAD,同理,∠CDF>∠CAD ∴∠BDF+∠CDF>∠BAD+∠CAD 即:∠BDC>∠BAC。

注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内角位置上,再利用不等式性质证明。

AGEDF图2?1CB三、有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如:

例如:如图3-1:已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF。 分析:要证BE+CF>EF ,可利用三角形三边关系定理证明,须把BE,CF,EF移到同一个三角形中,而由已知∠1=∠2,∠3=∠4,可在角的两边截取相等的线段,利用三角形全等对应边相等,把EN,FN,EF移到同一个三角形中。

证明:在DA上截取DN=DB,连接NE,NF,则DN=DC, 在△DBE和△DNE中:

ANEF2314BD图3?1C?DN?DB(辅助线的作法)∵? ??1??2(已知)?ED?ED(公共边)?∴△DBE≌△DNE (SAS)

∴BE=NE(全等三角形对应边相等) 同理可得:CF=NF

在△EFN中EN+FN>EF(三角形两边之和大于第三边) ∴BE+CF>EF。

注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的性质得到对应元素相等。

四、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。

例如:如图4-1:AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF 证明:延长ED至M,使DM=DE,连接

CM,MF。在△BDE和△CDM中,

A?BD?CD(中点的定义)∵???1??CDM(对顶角相等) ?ED?MD(辅助线的作法)? ∴△BDE≌△CDM (SAS)

EFB2341DC 又∵∠1=∠2,∠3=∠4 (已知) ∠1+∠2+∠3+∠4=180°(平角的定义) ∴∠3+∠2=90°,即:∠EDF=90° ∴∠FDM=∠EDF =90° 在△EDF和△MDF中

图4?1M?ED?MD(辅助线的作法) ∵???EDF??FDM(已证)

?DF?DF(公共边)? ∴△EDF≌△MDF (SAS)

∴EF=MF (全等三角形对应边相等)

∵在△CMF中,CF+CM>MF(三角形两边之和大于第三边) ∴BE+CF>EF

注:上题也可加倍FD,证法同上。

注意:当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中。

五、有三角形中线时,常延长加倍中线,构造全等三角形。

例如:如图5-1:AD为 △ABC的中线,求证:AB+AC>2AD。 分析:要证AB+AC>2AD,由图想到: AB+BD>AD,AC+CD>AD,所以有AB+AC+ BD+CD>AD+AD=2AD,左边比要证

ABDCE结论多BD+CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去。

证明:延长AD至E,使DE=AD,连接BE,则AE=2AD ∵AD为△ABC的中线 (已知) ∴BD=CD (中线定义) 在△ACD和△EBD中

?BD?CD(已证) ???ADC??EDB(对顶角相等)

?AD?ED(辅助线的作法)? ∴△ACD≌△EBD (SAS)

∴BE=CA(全等三角形对应边相等)

∵在△ABE中有:AB+BE>AE(三角形两边之和大于第三边) ∴AB+AC>2AD。

(常延长中线加倍,构造全等三角形)

图5?1EAFBCD图5?2练习:已知△ABC,AD是BC边上的中线,分别以AB边、AC边为直角边各向形外作等腰直角三角形,如图5-2, 求证EF=2AD。

六、截长补短法作辅助线。

例如:已知如图6-1:在△ABC中,AB>AC,∠1=∠2,P为AD上任一点。求证:AB-AC>PB-PC。 分析:要证:AB-AC>PB-PC,想到利用三角形三边关系定理证之,因为欲证的是线段之差,故用两边之差小于第三边,从而想到构造第三边AB-AC,故可在AB上截取AN等于AC,得AB-AC=BN, 再连接PN,则PC=PN,又在△PNB中,PB-PN<BN,即:AB-AC>PB-PC。

证明:(截长法)

在AB上截取AN=AC连接PN , 在△APN和△APC中

A21PND图6?1CBM?AN?AC(辅助线的作法)∵? ??1??2(已知)?AP?AP(公共边)?

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

三角形中作辅助线的常用方法 一、在利用三角形三边关系证明线段不等关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如: 例1:已知如图1-1:D、E为△ABC内两点,求证:AB+AC>BD+DE+CE. 证明:(法一)将DE两边延长分别交AB、AC 于M、N, 在△AMN中,AM+AN > MD+DE+NE;(1) 在△BDM中,MB+MD>BD; (2) 在△CEN中,CN+NE>CE; (3) 由(1)+(2)+(3)得: AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE ∴AB+AC>BD+DE+EC AMBDEGNCAFECDB图

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com