当前位置:首页 > 高考数学(人教a版理科)一轮复习真题演练集训:计数原理、概率、随机变量及其分布 11-9 word版含答案
真题演练集训
1.同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是________.
3答案: 2
3
解析:由题意知,试验成功的概率p=,
433?3?故X~B?2,?,所以E(X)=2×=. 42?4?
2.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
(1)求这500件产品质量指标值的样本平均数x和样本方差s(同一组中的数据用该组区间的中点值作代表);
(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ),其中μ近似为样本平均数x,σ近似为样本方差s.
①利用该正态分布,求P(187.8 ②某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用①的结果,求E(X). 附:150≈12.2. 若Z~N(μ,σ),则P(μ-σ 2 2 2 2 2 2 x=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+ 230×0.02=200, s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08 +30×0.02=150. (2)①由(1)知,Z~N(200,150),从而P(187.8 ②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知 2 X~B(100,0.682 6),所以E(X)=100×0.682 6=68.26. 3.某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下: 上年度出 0 1 2 3 4 ≥5 险次数 保费 0.85a a 1.25a 1.5a 1.75a 2a 设该险种一续保人一年内出险次数与相应概率如下: 一年内出 险次数 概率 0 0.30 1 0.15 2 0.20 3 0.20 4 0.10 ≥5 0.05 (1)求一续保人本年度的保费高于基本保费的概率; (2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值. 解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.20+0.20+0.10 +0.05=0.55. (2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.10 +0.05=0.15. 又P(AB) =P(B), 故P(B|A)= PABPB0.153 ===. PAPA0.5511 3 因此所求概率为. 11 (3)记续保人本年度的保费为X,则X的分布列为 X P 0.85a 0.30 a 0.15 1.25a 0.20 1.5a 0.20 1.75a 0.10 2a 0.05 E(X)=0.85a×0.30+a×0.15+1.25a×0.20+1.5a×0.20+1.75a×0.10+2a×0.05= 1.23a. 因此续保人本年度的平均保费与基本保费的比值为1.23. 课外拓展阅读 离散型随机变量的期望问题 离散型随机变量的期望常与茎叶图、频率分布直方图、分层抽样、函数、不等式等知识相结合,这就为设计新颖、内在联系密切、思维方法灵活的考题开辟了广阔的空间.近年高考中有关离散型随机变量的期望的题目多以解答题形式呈现,一题多问,这样既降低了起点,又分散了难点,能较全面地考查必然与或然思想、处理交汇性问题的能力和运算求解能力,难度多为中等,分值在12分左右.现一起走进离散型随机变量的期望,欣赏其常见的交汇方式与解题方法. 一、离散型随机变量的期望与茎叶图的交汇问题 为备战2017年青年跳水世锦赛,我国跳水健儿积极训练,在最近举行的一次选拔赛中,甲、乙两名运动员为争夺一个参赛名额进行了七轮激烈的比赛,甲、乙两名选手七轮比赛的得分如图所示,已知甲的平均得分比乙的平均得分少1.
共分享92篇相关文档