当前位置:首页 > 2017年山东省菏泽市中考数学试卷(含答案解析)
∴△ACA′是等腰直角三角形, ∴∠CA′A=45°,∠CA′B′=20°=∠BAC ∴∠BAA′=180°﹣70°﹣45°=65°, 故选:C.
【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
6.(3分)(2017?菏泽)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是( )
A.x>2 B.x<2 C.x>﹣1 D.x<﹣1
【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x>ax+3的解集即可.
【解答】解:∵函数y1=﹣2x过点A(m,2), ∴﹣2m=2, 解得:m=﹣1, ∴A(﹣1,2),
∴不等式﹣2x>ax+3的解集为x<﹣1. 故选D.
【点评】此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.
7.(3分)(2017?菏泽)如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是( )
A.(0,) B.(0,) C.(0,2) D.(0,)
【分析】作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,根据A的坐标为(﹣4,5),得到A′(4,5),B(﹣4,0),D(﹣2,0),求出直线DA′的解析式为y=x+,即可得到结论.
【解答】解:作A关于y轴的对称点A′,连接A′D交y轴于E, 则此时,△ADE的周长最小, ∵四边形ABOC是矩形, ∴AC∥OB,AC=OB, ∵A的坐标为(﹣4,5), ∴A′(4,5),B(﹣4,0), ∵D是OB的中点, ∴D(﹣2,0),
设直线DA′的解析式为y=kx+b, ∴
,
∴,
∴直线DA′的解析式为y=x+, 当x=0时,y=, ∴E(0,), 故选B.
【点评】此题主要考查轴对称﹣﹣最短路线问题,解决此类问题,一般都是运用轴对称的性质,将求折线问题转化为求线段问题,其说明最短的依据是三角形两边之和大于第三边.
8.(3分)(2017?菏泽)一次函数y=ax+b和反比例函数y=在同一个平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是( )
A. B. C. D.
【分析】根据反比例函数图象和一次函数图象经过的象限,即可得出a<0、b>0、c<0,由此即可得出:二次函数y=ax2+bx+c的图象开口向下,对称轴x=﹣轴负半轴,再对照四个选项中的图象即可得出结论. 【解答】解:观察函数图象可知:a<0,b>0,c<0, ∴二次函数y=ax2+bx+c的图象开口向下,对称轴x=﹣故选A.
【点评】本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,根据反比例函数图象和一次函数图象经过的象限,找出a<0、b>0、c<0是解题的关键. 二、填空题(本大题共6小题,每小题3分,满分18分) 9.(3分)(2017?天水)分解因式:x3﹣x= x(x+1)(x﹣1) .
【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解. 【解答】解:x3﹣x, =x(x2﹣1), =x(x+1)(x﹣1).
故答案为:x(x+1)(x﹣1).
【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.
10.(3分)(2017?菏泽)关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是 0 .
【分析】由于方程的一个根是0,把x=0代入方程,求出k的值.因为方程是关于x的二次方
>0,与y轴的交点在y轴负半轴.
>0,与y轴的交点在y
程,所以未知数的二次项系数不能是0.
【解答】解:由于关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0, 把x=0代入方程,得k2﹣k=0, 解得,k1=1,k2=0
当k=1时,由于二次项系数k﹣1=0,
方程(k﹣1)x2+6x+k2﹣k=0不是关于x的二次方程,故k≠1. 所以k的值是0. 故答案为:0
【点评】本题考查了一元二次方程的解法、一元二次方程的定义.解决本题的关键是解一元二次方程确定k的值,过程中容易忽略一元二次方程的二次项系数不等于0这个条件. 11.(3分)(2017?菏泽)菱形ABCD中,∠A=60°,其周长为24cm,则菱形的面积为 18cm2.
【分析】根据菱形的性质以及锐角三角函数关系得出BE的长,即可得出菱形的面积. 【解答】解:如图所示:过点B作BE⊥DA于点E ∵菱形ABCD中,其周长为24cm, ∴AB=AD=6cm, ∴BE=AB?sin60°=3
cm,
cm2.
∴菱形ABCD的面积S=AD?BE=18故答案为:18
.
【点评】此题主要考查了菱形的面积以及其性质,得出AE的长是解题关键.
12.(3分)(2017?菏泽)一个扇形的圆心角为100°,面积为15π cm2,则此扇形的半径长为 3cm .
即可求得半径.
=15π,
【分析】根据扇形的面积公式S=【解答】解:设该扇形的半径为R,则解得R=3
.
cm.
即该扇形的半径为3
共分享92篇相关文档