云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 鸡兔同笼问题(一)五种基本公式和例题讲解

鸡兔同笼问题(一)五种基本公式和例题讲解

  • 62 次阅读
  • 3 次下载
  • 2025/6/13 17:38:33

(奥数)鸡兔同笼问题(一)

五种基本公式和例题讲解

(一)已知总头数和总脚数,求鸡、兔各多少(假设法):

假设全是鸡:口诀:假“鸡”得“兔”(第一次算得的数)

(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数; 总头数-兔数=鸡数。

或者假设全是兔:口诀:假“兔”得“鸡”(第一次算得的数) (每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数; 总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?” 解一 (100-2×36)÷(4-2)=14(只)………兔; 36-14=22(只)……………………………鸡。 解二 (4×36-100)÷(4-2)=22(只)………鸡; 36-22=14(只)…………………………兔。答:略

(二)已知总头数和鸡 、兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式 ※仍属 假“鸡”得“兔”类型

(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数

※仍属假“兔”得“鸡”类型

或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数; 总头数-鸡数=兔数。(

例如:鸡和兔总共107只,鸡比兔多58只脚,鸡和兔各几只?

(1)假设全是鸡:(2×107-58)÷(2+4)=26(只兔);107-26=81(只鸡) ※↓因为鸡脚比兔脚多58,所以应减去58

(2)假设全是兔: (4×107+58)÷(2+4)=81(只鸡); 107-81=26(只兔) ※↓因兔脚比鸡脚少58,所以应加上58

1

(三)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。 ※仍属 假“鸡”得“兔”类型

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数。

※仍属假“兔”得“鸡”类型

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数; 总头数-鸡数=兔数。

例如:鸡和兔总共107只,兔比鸡多56只脚,鸡和兔各几只? (2×107+56)÷(2+4)=45(只兔);107-45=62(只鸡) ※↓因为鸡脚比兔脚少56,所以应加上56在此处键入公式。 或(4 ) 62(只鸡);107-62=45(只兔) ※↓因为兔脚比鸡脚多56,所以应减去56

说明:每增加(或减少)一只鸡(或兔),它们脚数的差就是(2+4)

(四)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:

〔(两次总脚数之和)÷(每只鸡、兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;

〔(两次总脚数之和)÷(每只鸡、兔脚数之和)-(两次总脚数之差)÷(每只鸡、兔脚数之差)〕÷2=兔数。

例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”

分析:由题意知,鸡比兔多

解 法一:(1)〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2 =(16+4) 2

=20÷2=10(只鸡)

(2)〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2 =(16-4)

=12÷2=6(只兔) (答略)

2

或:解:(52-44) 4(只兔)→鸡比兔多4只

法二: 设鸡有x只,则兔有(x-4)只。 法三:解:设兔有x只,则鸡有(x+4)只。

(x-4) 4+2x=44 (x+4) 2+4x=44

4x-16+2x=44 2x+8+4x=44

6x=60 6x=36 X=10 x=6

10-4=6(只兔) 6+4=10(只鸡)

答:略 答:略 (五)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:

(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数;

或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”

解一 (4×1000-3525)÷(4+15) =475÷19=25(个)

解二 1000-(15×1000+3525)÷(4+15) =1000-18525÷19

=1000-975=25(个)(答略)

(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。它的解法显然可套用上述公式。)

3

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

(奥数)鸡兔同笼问题(一) 五种基本公式和例题讲解 (一)已知总头数和总脚数,求鸡、兔各多少(假设法): 假设全是鸡:口诀:假“鸡”得“兔”(第一次算得的数) (总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数; 总头数-兔数=鸡数。 或者假设全是兔:口诀:假“兔”得“鸡”(第一次算得的数) (每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数; 总头数-鸡数=兔数。 例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?” 解一 (100-2×36)÷(4-2)=14(只)………兔; 36-14=22(只)……………………………鸡。 解二 (4×36-100)÷(4-2)=22(只)………鸡; 36-22=14

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com