当前位置:首页 > 2012高考必看 - 高中数学重难点知识梳理
b?R(或a ,b非负),且“等号成立”时的条件,积ab或和a+b其中之一应是定值?(一正二定三相等) 43、
a2??b22?a?b2?ab?2aba?b , (a , b?R )(当且仅当a?b?c时,取等号); a、b、
?c?R,a2?b2?c2?ab?bc?ca(当且仅当a?b?c时,取等号); 44、 在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底0?a?1或a?1)讨论完
之后,要写出:综上所述,原不等式的解集是??. 45、 解含参数的不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.” 46、 对于不等式恒成立问题,常用的处理方式?(转化为最值问题) 三、数列 47、
等差数列中的重要性质:(1)若m?n?p?q,则am?an?ap?aq;(2)
数列{a2n?1}, {a2n}, {kan?b}仍成等差数列;Sn , S2n?Sn , S3n?S2n仍成等差数列32d 、a+
12d(3)若三数成等差数列,则可设为a-d、a、a+d;若为四数则可设为a-、a-
12d、a+
32d;
(4)在等差数列中,求Sn 的最大(小)值,其思路是找出某一项,使这项及它前面的项皆取正(负)值或0,而它后面各项皆取负(正)值,则从第一项起到该项的各项的和为最大(小).即:当a1 >0,d<0,解不等式组 an ≥0 an+1 ≤0 可得Sn 达最大值时的n的值;当a1 <0,d>0,解不等式组 an ≤0 an+1 ≥0 可得Sn 达最小值时的n的值;(5).若an ,bn 是等差数列,Sn ,Tn 分别为an ,bn 的前n项和,则若{an}是等差数列,则{aa}是等比数列,若{an}是等比数列且annambm?S2m?1T2m?1。.(6).
?0,则{logaan}是等差数列.
48、
Sk,S2k?Sk,S3k?S2k等比数列中的重要性质:(1)若m?n?p?q,则am?an?ap?aq;(2)
成等比数列 49、
你是否注意到在应用等比数列求前n项和时,需要分类讨论.(q?1时,Sn?na1;q?1时,
a1(1?q)1?qnSn?)
50、
等比数列的一个求和公式:设等比数列?an?的前n项和为Sn,公比为q, 则
mSm?n?Sm?qSn.
51、
等差数列的一个性质:设Sn是数列?an?的前n项和,?an?为等差数列的充要条件是
2Sn?an?bn (a, b为常数)其公差是2a.
52、
你知道怎样的数列求和时要用“错位相减”法吗?(若cn?anbn,其中?an?是等差数列,?bn?是等比数列,求?cn?的前n项的和) 53、
用an?Sn?Sn?1求数列的通项公式时,你注意到a1?S1了吗? 你还记得裂项求和吗?(如
1n(n?1)?1n?1n?154、 .)
四、排列组合、二项式定理 55、 解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合. 56、 解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优
先法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法,还记得什么时候用隔板法? 57、
?Cn 排列数公式是: 组合数公式是: 排列数与组合数的关系是:Pn?m!nmm组合数性质:Cn=Cnrrrmn?m Cn+Cnr?1mm?1=Cn?1 ?Cn=2
r?0mrnCr?Cr?1?Cr?2???Cn?Cn?1
r二项式定理: (a?b)?Cna?Cna二项展开式的通项公式:Tr?1?Cnarn0n1n?1b?Cna2n?2b2???Cnarn?rb???Cnb
rnnn?rb(r?0,1,2?,n)
r五、立体几何
58、 有关平行垂直的证明主要利用线面关系的转化:线//线?线//面?面//面,线⊥线?线⊥面?面⊥面,垂直常用向量来证。 59、 作出二面角的平面角主要方法是什么?(定义法、三垂线法)三垂线法:一定平面,二作垂线,
三作斜线,射影可见. 60、 二面角的求法主要有:解直角三角形、余弦定理、射影面积法、法向量 61、 求点到面的距离的常规方法是什么?(直接法、等体积变换法、法向量法) 62、 你记住三垂线定理及其逆定理了吗? 63、 有关球面上两点的球面距离的求法主要是找球心角,常常与经度及纬度联系在一起,你还记得
经度及纬度的含义吗?(经度是面面角;纬度是线面角) 64、 你还记得简单多面体的欧拉公式吗?(V+F-E=2,其中V为顶点数,E是棱数,F为面数),棱的
两种算法,你还记得吗?(①多面体每面为n边形,则E=E=
mV2nF2;②多面体每个顶点出发有m条棱,则
)
六、解析几何 65、 设直线方程时,一般可设直线的斜率为k,你是否注意到直线垂直于x轴时,斜率k不存在的情
况?(例如:一条直线经过点??3,???3?22?,且被圆x?y?25截得的弦长为8,求此弦所在直线的2?方程。该题就要注意,不要漏掉x+3=0这一解.) 66、 定比分点的坐标公式是什么?(起点,中点,分点以及?值可要搞清) 线段的定比分点坐标公式
??设P(x,y) ,P1(x1,y1) ,P2(x2,y2) ,且P1P??PP2 ,则
x1??x2?x???1?? ?y??y2?y?1?1???中点坐标公式
x1?x2?x???2 ?y?y2?y?1?2??x1?x2?x3?3y1?y2?y3?,?。
3?若A(x1,y1),B(x2,y2),C(x3,y3),则△ABC的重心G的坐标是?67、 在利用定比分点解题时,你注意到???1了吗?
68、 在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提
到的两条直线可以理解为它们不重合.
69、直线方程的几种形式:点斜式、斜截式、两点式、截矩式、一般式.以及各种形式的局限性.(如点
斜式不适用于斜率不存在的直线) 70、对不重合的两条直线l1:A1x?B1y?C1?0,l2:A2x?B2y?C2?0,有
l1//l2?A1B2?A2B1??; l1?l2?A1A2?B1B2?0.
AC?AC21?1271、直线在坐标轴上的截矩可正,可负,也可为0. 72、直线在两坐标轴上的截距相等,直线方程可以理解为
在两条坐标轴上的截距都是0,也是截距相等.
73、两直线Ax?By?C1?0和Ax?By?C2?0的距离公式d=—————————— 74、
直线的方向向量还记得吗?直线的方向向量与直线的斜率有何关系?当直线L的方向向量为
xa?yb?1,但不要忘记当 a=0时,直线y=kx
m=(x0,y0)时,直线斜率k=———————;当直线斜率为k时,直线的方向向量m=—————
75、 到角公式及夹角公式———————,何时用?
76、处理直线与圆的位置关系有两种方法:(1)点到直线的距离;(2)直线方程与圆的方程联立,判别
式. 一般来说,前者更简捷.
77、处理圆与圆的位置关系,可用两圆的圆心距与半径之间的关系.
78、在圆中,注意利用半径、半弦长、及弦心距组成的直角三角形并且要更多联想到圆的几何性质. 79、在利用圆锥曲线统一定义解题时,你是否注意到定义中的定比的分子分母的顺序?两个定义常常结
伴而用,有时对我们解题有很大的帮助,有关过焦点弦问题用第二定义可能更为方便。(焦半径公式:
椭圆:|PF1|=———— ;|PF2|=———— ;双曲线:|PF1|=———— ;|PF2|=———— (其中F1为左焦点F2为右焦点 );抛物线:|PF|=|x0|+
p2)
80、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式??0的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在??0下进行).
81、椭圆中,a,b,c的关系为————;离心率e=————;准线方程为————;焦点到相应准线距离为———— 双
曲线中,a,b,c的关系为————;离心率e=————;准线方程为————;焦点到相应准线距离为———— 82、 通径是抛物线的所有焦点弦中最短的弦. 83、 你知道吗?解析几何中解题关键就是把题目中的几何条件代数化,特别是一些很不起眼的条件,
有时起着关键的作用:如:点在曲线上、相交、共线、以某线段为直径的圆经过某点、夹角、垂直、平行、中点、角平分线、中点弦问题等。圆和椭圆参数方程不要忘,有时在解决问题时很方便。数形结合是解决解几问题的重要思想方法,要记得画图分析哟!
84、你注意到了吗?求轨迹与求轨迹方程有区别的。求轨迹方程可别忘了寻求范围呀!
85、在解决有关线性规划应用问题时,有以下几个步骤:先找约束条件,作出可行域,明确目标函数,
其中关键就是要搞清目标函数的几何意义,找可行域时要注意把直线方程中的y的系数变为正值。如:求2<5a-2b<4,-3<3a+b<3求a+b的取值范围,但也可以不用线性规划。 七、向量
86、两向量平行或共线的条件,它们两种形式表示,你还记得吗?注意a??b是向量平行的充分不必要
条件。(定义及坐标表示)
87、向量可以解决有关夹角、距离、平行和垂直等问题,要记住以下公式:|a|=a·a,
cosθ=a?b|a||b|?x12x1x2?y1y2?y12x22?y222
88、利用向量平行或垂直来解决解析几何中的平行和垂直问题可以不用讨论斜率不存在的情况,要注意
a?b?0是向量a和向量b夹角为钝角的必要而非充分条件。
89、向量的运算要和实数运算有区别:如两边不能约去一个向量,向量的乘法不满足结合律,即
a(b?c)?(a?b)c,切记两向量不能相除。
90、你还记得向量基本定理的几何意义吗?它的实质就是平面内的任何向量都可以用平面内任意不共线
的两个向量线性表示,它的系数的含义与求法你清楚吗?
91、一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用,对于一个向
量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以 一个向量,但不能两边同除以一个向量。 92、 向量的直角坐标运算
设a??a1,a2,a3?,b??b1,b2,b3?,则
???a?b??a1?b1,a2?b2,a3?b3?
???a?b??a1?b1,a2?b2,a3?b3?
??a???a1,?a2,?a3????R?
共分享92篇相关文档