当前位置:首页 > 2016上海旅游高等专科学校自主招生数学模拟试题及答案
考单招——上高职单招网 1113P(??4)?C3?()3??.
2432因此其概率分布为:
P ? 0 3 321 10 322 12 323 6 324 1 32 ····························································································· 11分
所以在5月13日抵达灾区的队伍数?的数学期望为:
E?=0×
31012617+ 1× + 2× + 3×+ 4×=. 323232323247答:在5月13日抵达灾区的队伍数?的数学期望E?=. ························ 12
4分
解法二:设5月13日抵达灾区的队伍数为?,则?=0、1、2、3、4. ········· 7分 1113由已知有:P(??0)?(1?)2?(1?)?(1?)?;
22432P(??1)?10; 3211111111111122110P(??2)?C2?()2?(1?)?(1?)?C2??(1?)?[(1?)???(1?)]?C2?(1?)2???;
22422242422432111111111621P(??3)?C2?()2?[?(1?)?(1?)?]?C2?()?(1?)???;
2242422243211112P(??4)?C2?()2???.
24232因此其概率分布为:
P ? 0 3 321 10 322 12 323 6 324 1 32 ····························································································· 11分
所以在5月13日抵达灾区的队伍数?的数学期望为:
考单招——上高职单招网 E?=0×
31012617+ 1× + 2× + 3×+ 4×=. 323232323247答:在5月13日抵达灾区的队伍数?的数学期望E?=. ························ 12
4分
20.(Ⅰ)证法一:由an?1?2an?n?1可得an?1?(n?1)?2(an?n),又a1?2,则a1?1?1,
∴数列{an?n}是以a1?1?1为首项,且公比为2的等比数列, ··················· 4分 则an?n?1?2n?1,∴an?2n?1?n.······················································ 6分 证法二:
an?1?(n?1)2an?n?1?(n?1)2an?2n???2,又a1?2,则a1?1?1,
an?nan?nan?n∴数列{an?n}是以a1?1?1为首项,且公比为2的等比数列, ··················· 4分 则an?n?1?2n?1,∴an?2n?1?n.······················································ 6分 (Ⅱ)解:∵bn?nnn?n ,∴bn?··································· 7分
2an?2n2an?2n2?Sn?b1?b2???bn?111?2?()2???n?()n?????① 22211111∴Sn?()2?2?()3???(n?1)()n?n?()n?1????② 2222211[1?()n]1111112?n?(1)n?1?1?(n?2)(1)n?1, 由①?②,得Sn??()2?()3???()n?n?()n?1?21222222221?21?Sn?2?(n?2)()n. ·································································· 9分
23n1n3nn?21n(n?2)[2n?(2n?1)]?Sn??2?(n?2)()???(n?2)()?,
2n?122n?12n?12(2n?1)?2nn?1时,Sn?3n3n;n?2时,Sn?; 2n?12n?13n3n. ?0.∴Sn?2n?12n?111n?3时,2n?Cn0?Cn???Cnn?1?Cnn?Cn0?Cn?Cnn?1?2n?1,则?Sn?
考单招——上高职单招网 综上:n?1或2时,Sn?分
21.(Ⅰ)∵f(x)?lnx?x2?x?2,其定义域为(0,??).
1分
3n;n?3时Sn?3n. ································ 122n?12n?11?2x2?x?1?(2x?1)(x?1)∴f?(x)??2x?1?. ··································· 2分 ?xxx∵x?0,∴当0?x?1时,f?(x)?0;当x?1时,f?(x)?0.
故函数f(x)的单调递增区间是(0,1);单调递减区间是(1,??). ···················· 4分 (Ⅱ)由(Ⅰ)知,函数f(x)的单调递增区间是(0,1);单调递减区间是(1,??). 当0?a?1时,f(x)在区间(0,a]上单调递增,f(x)的最大值
f(x)max?f(a)?lna?a2?a?2;
当a?1时,f(x)在区间(0,1)上单调递增,在(1,a)上单调递减,则f(x)在x?1处
取得极大值,也即该函数在(0,a]上的最大值,此时f(x)的最大值f(x)max?f(1)?2;
?lna?a2?a?2,0?a?1,∴f(x)在区间(0,a]上的最大值f(x)max?? ······················· 8分
2,a?1.?(Ⅲ)讨论函数f(x)与g(x)图象交点的个数,即讨论方程f(x)?g(x)在(0,??)上
根的个数.
该方程为lnx?x2?x?2?x3?(1?2e)x2?(m?1)x?2,即lnx?x3?2ex2?mx. 只需讨论方程
lnx··························· 9分 ?x2?2ex?m在(0,??)上根的个数,
x令u(x)?lnx(x?0),v(x)?x2?2ex?m. x1?x?lnx1?lnxlnxx?因u(x)?,令u?(x)?0,得x?e, (x?0),u?(x)?2xx2x1当x?e时,u?(x)?0;当0?x?e时,u?(x)?0. ∴u(x)极大?u(e)?,
e当x?0?时,u(x)?且以x轴为渐近线.
lnxlnx?0, 但此时u(x)?0,???; 当x???时,limu(x)?limx???x???xx
考单招——上高职单招网 如图构造u(x)?lnx的图象,并作出函数v(x)?x2?2ex?m的图象. x22①当m?e?即m?e?时,方程无根,没有公共点;
1e1e22②当m?e?即m?e?时,方程只有一个根,有一个公共点;
1e1e22③当m?e?即m?e?时,方程有两个根,有两个公共点. ·················· 12
1e1e分
22.(Ⅰ)令y?yx,解得x?,由0?x?1,解得y?0,
1?y1?x?1∴函数f(x)的反函数f(x)?x(x?0). ········································· 2分 1?x则an?1?f?1(an)?an11??1. ,得·············································· 3分
1?anan?1an11. ······················ 4分 ?{}是以2为首项,l为公差的等差数列,故an?n?1an(Ⅱ)∵f?1(x)?x1(x?0),∴[f?1(x)]??, ····························· 5分
(1?x)21?xn1?(x?n), 2n?1(1?n)∴y?f?1(x)在点(n,f?1(n))处的切线方程为y?n2令x?0, 得bn?. ····························································· 6分
(1?n)2bn??2?22?n??(n?1)?(n?)???∴2?,
anan24∵仅当n?5时取得最小值,∴4.5??2?5.5,解之9???11.
∴?的取值范围为(9,11). ····························································· 8分
xx1?x22x1?x2?[?]??g(x)?[f(x)?f(x)]?(Ⅲ)···· 9分 22,x?(0,1). ·21?x1?x1?x1?x1?x?1
考单招——上高职单招网 则xn?1?xn?xn(1?xn)?1?xn1,因0 1?xn11112?1 ······· 10?????22xn?14x?1?8?2422?2nxn?1(xn?1?xn)2xn?1?xn112?111∴?(xn?1?xn)?(xn?1?xn)(?)?(?) xnxn?1xnxn?1xnxn?18xnxn?12?1111111(xn?1?xn)2(x1?x2)2(x2?x3)2?[(?)?(?)???(?)] ∴????8x1x2x2x3xnxn?1x1x2x2x3xnxn?1?2?1112?11················································· 12(?)?(2?), 8x1xn?18xn?1分 1111?2,∴0?2??1 ∵x1?,xn?1?xn,∴?xn?1?1,∴1?xn?1xn?1223?1(xn?1?xn)(x2?x1)(x3?x2)2?112?125∴14?????(2?)???. ········· x1x2x2x3xnxn?18xn?18816222分
共分享92篇相关文档