当前位置:首页 > 圆柱与圆锥(教案)
(1)这道题已知什么?求什么? (2)求圆锥的体积必须知道什么?
(3)求出这堆煤的体积后,应该怎样计算这堆煤的重量? 然后让学生做在练习本上,教师巡视,做完后集体订正。 3、做练习九的第5题。
教师指名学生先后回答下面问题: (1)圆柱的侧面积等于多少?
(2)圆柱的表面积的含义是什么?怎样计算? (3)圆柱体积的计算公式是什么? (4)圆锥的体积公式是什么?
然后,让学生把计算结果填写在教科书第51页的表格中。做完后集体订正。
7、圆锥体积的练习
教学内容:教科书练习九的第6—9题。
教学目的:通过练习,使学生进一步熟悉圆锥的体积计算。 教学过程: 一、复习
1、圆锥的体积公式是什么? 二、课堂练习
1、做练习九的第6题。
教师出示一个圆锥形物体,让学生想一想怎样测量才能计算出它的体积: 让学生分组讨论一下,然后各自让一名学生说说讨论的结果,最后归纳出底面圆的周长,再求出底面的半径,进而求出底面积,然后用书上介绍的方法,用直尺和三角板 测量出圆锥的高,这样就可以求出圆锥的体积。 2、做练习九的第7题。
读题后,教师可以先后提问: “这道题已知什么?求什么?
“要求这堆沙的重量,应该先求什么?怎样求?”
指名学生回答后,让学生做在练习本上,做完后集体订正。 3、做练习九的第8题。
读题后,教师可提出以下问题: “这道题要求的是什么?”
“要求这段钢材重多少千克,应该先求什么?怎样求?” “能直接利用题目中的数值进行计算吗?为什么?” “题目中的单位不统一,应该怎样统一?” 分别指名学生回答后,要使学生明白这里要先将2米改写成200厘米,再利用圆柱的体积计算公式算出钢材的体积是多少立方厘米,然后再求出它的重量。最后计算出的结果还应把克改写成千克。
4、做练习九的第9题。
读题后,教师提问:这道题要求粮仓装小麦多少吨,应该先求什么?
13
要使学生明白,应该先求2.5米高的小麦的体积,而不是求粮仓的体积。 让学生独立做在练习本上,做完后集体订正。 三、选做题
让学有余力的学生做练习九的第10*、11*、12*题。 1.练习九的第10*题。
教师:这道题要求圆锥的体积.但是题目中没有告诉底面积,而只是已知底 面周长和高。请大家想一想,应该怎样求出底面积?
引导学生利用“C=2∏r”再利用“S∏R,就可以求得S=∏( )’。再利用圆锥的体积公式就可以求出其体积。 2、练习九的第11*题。
这是一道有关圆柱、圆锥体积的比例应用题。
可以用列方程来解答。利用题目中圆锥和圆柱的体积之比,可以建立一个比例式。 设圆柱的高为x厘米
(注意:由于圆锥和圆柱的底面积S都相等,所以计算中可以先把S约去。)
3.练习九的第12题。
这道题是拆分组合图形,引导学生仔细分析图形,不难看出它是由等底的圆柱和圆锥组合而成的:从图中可以看出,圆柱和圆锥的底面直径都是16厘米,而圆柱的高是4厘米,圆锥的高是17厘米。然后再根据圆的面积公式及圆柱和圆锥的体积公式,就可以求出这个组合图形的体积了。
整理和复习
教学要求:通过整理和复习,掌握圆柱和圆锥的特点,求圆柱圆锥体积的计算公式。能区别
圆柱、圆锥,正确计算圆柱圆锥的体积,建立空间观念。
教学重点:使学生了解圆柱圆锥的特点,求圆柱圆锥的体积。 教学难点:形成表象,建立空间观念。 教学过程:
(一)整理
(1)圆柱 圆柱的特点 圆柱的各部分名称
圆柱表面积 圆柱的体积 V=Sh
(2)圆锥 圆锥的特点 圆锥的各部分名称
圆锥的体积 V=-1/3Sh (二)随堂练习
1、第48页1-3圆柱内容 填书。
练习十第1、2题,第3体求圆柱的体积。 2、第48页4-6题圆锥的内容,填书。 练习十第3题求圆锥的体积。 板书设计:
14
整理和复习
特征 圆柱 各部分名称 表面积=两个底面积=侧面积 体积=V=Sh 特征 圆锥 各部分名称 体积V=1/3Sh
圆柱和圆锥整理和复习
第 课时
教学内容:圆柱认识及其表面积的计算 教学目标;
1、 园柱各部分的名称及其意义
2、 计算侧面积、表面积,及其具体情况下的对策,掌握其具体方法 教学过程;
一、展示圆柱体圆锥体的侧面展开过程 1、 学生动手操作展示 2、
底面周长
由学生一边动手,一边解释。特别重视底面周长、高的特点,与长方形的长、宽关系形成侧面积的公式过程。
3、 学生填写各部分的名称(半径、高、底面周长)学生可画草图说明
二、表面积的认识及计算
1、圆柱的表面积的组成,根据具体的情况可能是(1)表面积=侧面积+2底面积 (2)表面积=侧面积+底面积 (3)表面积=侧面积 由学生口述在什么情况下是产生的,由学生具体展示 3、 表面积的计算
(1)r=5cm h =10cm s= (2)d=10cm h=10cm s=(3)c=31.4dm h=0.1m s= (4)一个汽油桶的底面半径是20厘米,高是2米,要做这样有盖的一对油桶需要铁皮多少平方米?如果每平方米的铁皮重1.5千克,这个油桶重多少千克?
(5)一段圆柱形烟筒长1.5米,横截面半径是10厘米。做10节这样的烟筒需多少铁皮? (6)、做一对无盖的圆柱形水桶,一只水桶的底面半径是30厘米,高45厘米,做这对水桶需要多少平方米的铁皮?
15
(7)、一个圆柱侧面积是个正方形,这个正方形的边长是5厘米(或面积是400平方厘米),那么这个圆柱的表面积是多少?
第 课时
教学内容:圆柱和圆柱的体积
教学目标:1、掌握圆柱和圆锥的体积计算。 2、能求与圆柱有关的一些问题。 3、实际运用。
教学重难点:重点---圆柱体积计算。
难点---圆柱和圆锥的变形及意义。 教学过程:
一、回忆与体积有关的公式及意义。
1、V=?rh V=sh V锥=
2
1121sh=rh=V柱 3332、计算与体积相关的条件。
3、圆柱与圆锥的高的比 V锥=
12V柱 V切去= V柱 2 V锥=V圆柱切去的 3 V锥= V柱 33二、体积的计算
1、 已知 V=8厘米 h=10cm 求 V锥= D=8cm h=15cm 求 V锥= C=25dm h=20dm 求 V锥= 2、 求V锥=
已知 r=10m h=12m D=12cm h=10cm C=12.56cm h=21cm
2
S=21cm h=20cm
3、 一个圆柱形水桶的底面半径是20厘米,高是8厘米,如果每立方米的水重1吨,那
么这个水桶可装水多少千克? 4、 书练习五第4题
5、 一堆煤堆成圆锥形,底面周长是31.4米,高是1.2米,这堆煤是多少立方米? 6、 把一块棱长是6厘米的正方体木块加工成一个最大的圆柱体(圆锥体),求体积?
第 课时
教学内容:圆柱和圆锥的体积的对比。
教学目标:1、掌握表面积和体积的区别及其联系 2、能准确地进行运算
16
共分享92篇相关文档