云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2010年中考数学真题分类汇编(150套)专题二十七·等腰三角形

2010年中考数学真题分类汇编(150套)专题二十七·等腰三角形

  • 62 次阅读
  • 3 次下载
  • 2025/5/1 4:21:59

在Rt?CHQ中,由勾股定理得:HQ?CQ2?CH2?52?42?3,则APQ?2HQ?6.………………………(9分) ②当点D在线段AM的延长线上时,∵?ABC与?DEC都是等边三角形 ∴AC?BC,CD?CE,?ACB??DCE?60? ∴?ACB??DCB??DCB??DCE ∴?ACD??BCE ∴?ACD≌?BCE?SAS? PBMC∴

?CBE??CAD?30?,同理可得:DQEPQ?6.…………………………(11分) ③当点D在线段MA的延长线上时, ∵?ABC与?DEC都是等边三角形 ∴AC?BC,CD?CE,?ACB??DCE?60? ∴?ACD??ACE??BCE??ACE?60? ∴?ACD??BCE ∴?ACD≌?BCE?SAS? ∴?CBE??CAD ∵?CAM?30?

∴?CBE??CAD?150? ∴?CBQ?30?. 同理可得:PQ?6.

综上,PQ的长是6. ………………………(13分)

DAEBMPCQ3.(2010 山东济南)(1)如图,已知AB?AC,AD?AE.求证BD?CE.

A B

D E

C

【答案】证明:∵AB=AC

∴∠B=∠C ∵AD=AE ∴∠ADE=∠AEC

∴180O -∠ADE=180O -∠AEC 即∠ADB=∠AEC 在△ABD和△ACE中

第 13 页 共 19 页

∵AB=AC ∠B=∠C

∠ADB=∠AEC

∴△ABD≌△ACE

∴BD=CE

4.(2010湖南衡阳)已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使 CE = CD.求证:BD = DE.

、【答案】∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵D为AC中点,∴∠DBC=30°,∵CE = CD,∴∠E=30°,∴∠DBC=∠E,∴BD = DE.

5.(2010 山东省德州)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O. (1)求证:AB=DC;

(2)试判断△OEF的形状,并说明理由.

A

O D

B E

第18题图

F C =CF,

A

O D

【答案】证明:(1)∵BE∴BE+EF=CF+EF, 即BF=CE.

又∵∠A=∠D,∠B=∠C,

∴△ABF≌△DCE(AAS), ∴AB=DC. (2)△OEF为等腰三角形 理由如下:∵△ABF≌△DCE, ∴∠AFB=∠DEC.

B E F C 第 14 页 共 19 页

∴OE=OF.

∴△OEF为等腰三角形.

6.(2010江苏常州)如图,在△ABC中,点D、E分别在边AC、AB上,BD=CE, ∠DBC=∠ECB。 求证:AB=AC。

【答案】

7.(2010四川内江)如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,

AE交DC于F,BD分别交CE,AE于点G、H. 试猜测线段AE和BD的位置和数量关系,并说明理由.

DF H G ECA

【答案】解:猜测 AE=BD,AE⊥BD. ··················································································· 2分 理由如下:

∵∠ACD=∠BCE=90°,

∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB. ·················································· 3分 ∵△ACD和△BCE都是等腰直角三角形,

∴AC=CD,CE=CB. ············································································································ 4分 ∴△ACE≌△DCB(S.A.S.) ··································································································· 5分 ∴AE=BD, ···························································································································· 6分 ∠CAE=∠CDB,. ····················································································································· 7分 ∵∠AFC=∠DFH,

第 15 页 共 19 页

B

∴∠DHF=∠ACD=90°, ··································································································· 8分 ∴AE⊥BD. ··························································································································· 9分 8.(2010 福建三明)如图,?ACB和?BCD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点。 全品中考网

(1)求证:△ACE≌△BCD;(5分) (2)若AD=5,BD=12,求DE的长。(5分)

【答案】(1)证明:??ACB和?ECD都是等腰直角三角形

∴AC=BC,EC=DC

…………2分

??ACE??DCE??DCA,?BCD??ACB??DCA?ACB??ECD?90? …………3分 ??ACE??BCD

在?ACE和?BCD中,AC=BC EC=DC ?ACE??BCD

…………3分 ??ACE≌?BCD

(2)解:由(1)可得AE=BD,?EAC??DBC?45?

又?BAC?45?

??EAD??EAC??BAC?90?,即?EAD是直角三角形…………8分

?DE?AE2?AD2?13

…………10分

9.(2010湖北襄樊) 如图5,点E、C在BF上,BF=FC,∠ABC=∠DEF=45°,∠A=∠

D=90°. (1)求证:AB=DE;

(2)若AC交DE于M,且AB=3,ME=2,将线段CE绕点C顺时针旋转,使点E旋转到AB上的G处,求旋转角∠ECG的度数.

AGBEMCFD

图5

【答案】(1)∵BE=FC,∴BC=EF.

第 16 页 共 19 页

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

在Rt?CHQ中,由勾股定理得:HQ?CQ2?CH2?52?42?3,则APQ?2HQ?6.………………………(9分) ②当点D在线段AM的延长线上时,∵?ABC与?DEC都是等边三角形 ∴AC?BC,CD?CE,?ACB??DCE?60? ∴?ACB??DCB??DCB??DCE ∴?ACD??BCE ∴?ACD≌?BCE?SAS? PBMC∴?CBE??CAD?30?,同理可得:DQEPQ?6.…………………………(11分) ③当点D在线段MA的延长线上时, ∵?ABC与?DEC都是等边三角形 ∴AC?BC,CD?CE,?ACB??DCE?60? ∴?ACD??ACE??BCE??ACE?60? ∴?ACD??BCE ∴?ACD≌?BCE?SAS? ∴?CBE??CAD ∵?CAM?30? ∴?CBE??CAD?150? ∴?CBQ?3

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com