当前位置:首页 > 2010年中考数学真题分类汇编(150套)专题二十七·等腰三角形
在Rt?CHQ中,由勾股定理得:HQ?CQ2?CH2?52?42?3,则APQ?2HQ?6.………………………(9分) ②当点D在线段AM的延长线上时,∵?ABC与?DEC都是等边三角形 ∴AC?BC,CD?CE,?ACB??DCE?60? ∴?ACB??DCB??DCB??DCE ∴?ACD??BCE ∴?ACD≌?BCE?SAS? PBMC∴
?CBE??CAD?30?,同理可得:DQEPQ?6.…………………………(11分) ③当点D在线段MA的延长线上时, ∵?ABC与?DEC都是等边三角形 ∴AC?BC,CD?CE,?ACB??DCE?60? ∴?ACD??ACE??BCE??ACE?60? ∴?ACD??BCE ∴?ACD≌?BCE?SAS? ∴?CBE??CAD ∵?CAM?30?
∴?CBE??CAD?150? ∴?CBQ?30?. 同理可得:PQ?6.
综上,PQ的长是6. ………………………(13分)
DAEBMPCQ3.(2010 山东济南)(1)如图,已知AB?AC,AD?AE.求证BD?CE.
A B
D E
C
【答案】证明:∵AB=AC
∴∠B=∠C ∵AD=AE ∴∠ADE=∠AEC
∴180O -∠ADE=180O -∠AEC 即∠ADB=∠AEC 在△ABD和△ACE中
第 13 页 共 19 页
∵AB=AC ∠B=∠C
∠ADB=∠AEC
∴△ABD≌△ACE
∴BD=CE
4.(2010湖南衡阳)已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使 CE = CD.求证:BD = DE.
、【答案】∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵D为AC中点,∴∠DBC=30°,∵CE = CD,∴∠E=30°,∴∠DBC=∠E,∴BD = DE.
5.(2010 山东省德州)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O. (1)求证:AB=DC;
(2)试判断△OEF的形状,并说明理由.
A
O D
B E
第18题图
F C =CF,
A
O D
【答案】证明:(1)∵BE∴BE+EF=CF+EF, 即BF=CE.
又∵∠A=∠D,∠B=∠C,
∴△ABF≌△DCE(AAS), ∴AB=DC. (2)△OEF为等腰三角形 理由如下:∵△ABF≌△DCE, ∴∠AFB=∠DEC.
B E F C 第 14 页 共 19 页
∴OE=OF.
∴△OEF为等腰三角形.
6.(2010江苏常州)如图,在△ABC中,点D、E分别在边AC、AB上,BD=CE, ∠DBC=∠ECB。 求证:AB=AC。
【答案】
7.(2010四川内江)如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,
AE交DC于F,BD分别交CE,AE于点G、H. 试猜测线段AE和BD的位置和数量关系,并说明理由.
DF H G ECA
【答案】解:猜测 AE=BD,AE⊥BD. ··················································································· 2分 理由如下:
∵∠ACD=∠BCE=90°,
∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB. ·················································· 3分 ∵△ACD和△BCE都是等腰直角三角形,
∴AC=CD,CE=CB. ············································································································ 4分 ∴△ACE≌△DCB(S.A.S.) ··································································································· 5分 ∴AE=BD, ···························································································································· 6分 ∠CAE=∠CDB,. ····················································································································· 7分 ∵∠AFC=∠DFH,
第 15 页 共 19 页
B
∴∠DHF=∠ACD=90°, ··································································································· 8分 ∴AE⊥BD. ··························································································································· 9分 8.(2010 福建三明)如图,?ACB和?BCD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点。 全品中考网
(1)求证:△ACE≌△BCD;(5分) (2)若AD=5,BD=12,求DE的长。(5分)
【答案】(1)证明:??ACB和?ECD都是等腰直角三角形
∴AC=BC,EC=DC
…………2分
??ACE??DCE??DCA,?BCD??ACB??DCA?ACB??ECD?90? …………3分 ??ACE??BCD
在?ACE和?BCD中,AC=BC EC=DC ?ACE??BCD
…………3分 ??ACE≌?BCD
(2)解:由(1)可得AE=BD,?EAC??DBC?45?
又?BAC?45?
??EAD??EAC??BAC?90?,即?EAD是直角三角形…………8分
?DE?AE2?AD2?13
…………10分
9.(2010湖北襄樊) 如图5,点E、C在BF上,BF=FC,∠ABC=∠DEF=45°,∠A=∠
D=90°. (1)求证:AB=DE;
(2)若AC交DE于M,且AB=3,ME=2,将线段CE绕点C顺时针旋转,使点E旋转到AB上的G处,求旋转角∠ECG的度数.
AGBEMCFD
图5
【答案】(1)∵BE=FC,∴BC=EF.
第 16 页 共 19 页
共分享92篇相关文档