当前位置:首页 > 高等数学-上海交通大学出版社-第三版-习题10解答
2?x??33?2原积分???(x2y?3xex)dx???ysinydy?{(?)x?e?ysiny}dy ???0C13332??3?82442?3eπ(π?1)?3?π3?2cos2?sin2;
3(3)
?C(exsiny?my)dx?(excosy?m)dy
C?C1C1xxxx???(esiny?my)dx?(ecosy?m)dy??(esiny?my)dx?(ecosy?m)dy
其中C1:y?0,x?[0,2a]方向从点[2a,0]到点(0,0),记D为C?C1所围区域,则由格林公式
原积分???mdxdy??2a0dy?1m?a2.
D08所属章节:第十章第三节 难度:二级
18.计算曲线积分???ydx?xdy:
Cx2?y2(1) C为任一按段光滑的、不包含原点的闭曲线;
x2(2) C为椭圆?y2?1,取正向;
4解答:(1)由于当x2?y2?0时,
??y?x(2)?(),故由格林公式 ?yx?y2?xx2?y2?ydx?xdy0dxdy?0 ??Cx2?y2???D?ydx?xdy(2)蜒?Cx2?y2??ydx?xdy?ydx?xdy?ydx?xdy其中C1:x2?y2??2取????C?C1x2?y2蜒?C1x2?y2?C1x2?y2,
负向,由于C1:x??cost,y??sint,所以
22222??sint??cost?ydx?xdydt?2?. ?2?Cx2?y2??0?所属章节:第十章第三节 难度:三级
19.验证下列P(x,y)dx+Q(x,y)dy在全平面内是某个函数u(x,y)的全微分,并求此原函数u(x,y):
(1)(x?2y)dx?(2x?y)dy;
91
(2)(x2?2xy?y2)dx?(x2?2xy?y2)dy; (3)(x4?4xy3)dx?(6x2y2?5y4)dy;
x5注:本小题已作改动,原来题中(x?4xy)dx?(6xy?5y)dy,与参考答案?2x2y3?y5?C543224x5不相符.也可以改动答案为?2x2y3?y5?C.
5(4)excosydx?exsinydy; 解答:(1)
?Q?P??2 , P(x,y)dx+Q(x,y)dy在全平面内是u(x,y)的全微分. ?x?yxx2?uy2u(x,y)??(x?2y)dx?2xy???(y),?2x???(y)?2x?y,?(y)??C
02?y21则u(x,y)?(x2?y2)?2xy?C
2(2)
?Q?P??2x?2y , P(x,y)dx+Q(x,y)dy在全平面内是u(x,y)的全微分. ?x?yx222x3?uu(x,y)??(x?2xy?y)dx?xy??xy2??(y),?x2?2xy???(y)?x2?2xy?y2,
03?yy3?(y)???C,则
31u(x,y)?(x3?y3)?xy(x?y)?C;
3(3)
?Q?P??12xy2 , P(x,y)dx+Q(x,y)dy在全平面内是u(x,y)的全微分. ?x?yx4323x5?uu(x,y)??(x?4xy)dx?2xy???(y),?6x2y2???(y)?6x2y2?5y4,?(y)?y5?C
05?yx5则u(x,y)??2x2y3?y5?C;
5(4)
?Q?P???exsiny , P(x,y)dx+Q(x,y)dy在全平面内是u(x,y)的全微分. ?x?y 92
u(x,y)??excosydx?excosy??(y),0x?u??exsiny???(y)??exsiny,?(y)?C ?y则u(x,y)?excosy?C.
所属章节:第十章第四节 难度:二级
20.设有力场F=(x+y2)i+(2xy–8)j,证明质点在此力场内移动时,场力所作的功与路径无关,只与起终点有关 解答:由于
?Q?P??2y,利用格林公式知场力所作的功与路径无关, 只与起终点有关. ?x?y所属章节:第十章第四节 难度:二级
21.计算下列曲面积分
(1)??xyzdS,其中S为平面x?y?Sz?1在第一卦限的部分; 2(2)??xdS,其中S为球面x2?y2?z2?R2在第一卦限的部分;
S(3)??x2?y2dS,其中S为单位球面x2?y2?z2?1;
S(4)???x2?y2?dS,其中S为锥面z?x2?y2及平面z=1所围区域的整个边界曲面;
S解答:(1)z?2?2x?2y,zx??2,zy??2,Dxy?{(x,y)x?y?1,x?0,y?0}
??xyzdS?3??xy(2?2x?2y)dxdy?6?dx?SDxy011?x0xy(1?x?y)dy?1; 20(2)
z?R2?x2?y2,zx?xR?xR2?x2?y2,zy???yR2?x2?y2R,Dxy?{(x,y)x2?y2?R2,x?0,y?0},
??xdS???SDxyR?x?y222dxdy?R?2d??0?2cos?R??220d???R44;
(3)z?1?x2?y2,zx??x1?x2?y2,zy??y1?x2?y2,Dxy?{(x,y)x2?y2?1}
93
??Sx?ydS?2??Dxy22x2?y21?x2?y2dxdy?2?d??02?1?21??20d???2;
(3)将S分为两个曲面S1,S2.S1为锥面z?x2?y2
z?x2?y2,zx?xx2?y2,zy?yx2?y22,Dxy?{(x,y)x2?y2?1}
2?1???xS12?y?dS?2???x?y?dxdy?2?d???3d??22Dxy002? 2S2为平面z=1,z?1,zx?0,zy?0,Dxy?{(x,y)x2?y2?1}.
???xS121?y?dS????x?y?dxdy??d???3d???
002Dxy2222?1???xS21?y2?dS?(2?1)π.
2所属章节:第十章第五节 难度:二级
22.设半径为R的球面上每点的密度等于该点到某一定直径的距离的平方,求此球面的质量 解答:将直径设为Z轴, 球心为原点,球的方程为z?R2?x2?y2,
zx??xR?x?yS222,zy??yR?x?y222,
球面的质量为???x2?y2?dS,
???x?y?dS?2R??22SDxyx2?y2R2?x2?y2dxdy?2R?d??02?R08d??πR4.
3R2??2?3所属章节:第十章第五节
难度:二级
23.求球面z?a2?x2?y2含在柱面x2?y2?ax?0内部的面积 解答:z?a2?x2?y2,zx?aa2?x2?y2?xa2?x2?y2?2,zy?acos??ya2?x2?y2.Dxy?{(x,y)x2?y2?ax}
??dS???SDxydxdy?a??d???2?a2??20d??(??2)a2.
94
共分享92篇相关文档