当前位置:首页 > (完整word版)最新高考文科数学导数全国卷(2012-2018年)
2018全国卷)(12分)
已知函数⑴讨论
的单调性;
.
⑵若存在两个极值点,,证明:.
导数高考题专练(答案)
1
2解:(1)f′(x)=ex(ax+a+b)-2x-4. 由已知得f(0)=4,f′(0)=4. 故b=4,a+b=8. 从而a=4,b=4.
(2)由(1)知,f(x)=4ex(x+1)-x2-4x,
1??f′(x)=4ex(x+2)-2x-4=4(x+2)·?ex??.
2??令f′(x)=0得,x=-ln 2或x=-2.
从而当x∈(-∞,-2)∪(-ln 2,+∞)时,f′(x)>0; 当x∈(-2,-ln 2)时,f′(x)<0.
故f(x)在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减.
当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).
3
4 (I)f'?x???x?1?ex?2a?x?1???x?1??ex?2a?.
(i)设a?0,则当x????,1?时,f'?x??0;当x??1,???时,f'?x??0. 所以在???,1?单调递减,在?1,???单调递增. (ii)设a?0,由f'?x??0得x=1或x=ln(-2a). ①若a??ex,则f'?x???x?1??e?e?,所以f?x?在???,???单调递增. 2e,则ln(-2a)<1,故当x????,ln??2a??U?1,???时,f'?x??0; 2②若a??当x?ln??2a?,1时,f'?x??0,所以f?x?在??,ln??2a?,?1,???单调递增,在ln??2a?,1单调递减. ③若a????????e,则ln??2a??1,故当x????,1?U?ln??2a?,???时,f'?x??0,2当x?1,ln??2a?时,f'?x??0,所以f?x?在???,1?,ln??2a?,??单调递增,在1,ln??2a?单调递减.
??????(II)(i)设a?0,则由(I)知,f?x?在???,1?单调递减,在?1,???单调递增. 又f?1???e,f?2??a,取b满足b<0且
ba?ln, 22则f?b??a3?23b?b??0,所以f?x?有两个零点. ?b?2??a?b?1??a??22??x(ii)设a=0,则f?x???x?2?e所以f?x?有一个零点. (iii)设a<0,若a??e,则由(I)知,f?x?在?1,???单调递增. 2e,则由(I)知,f?x?在2又当x?1时,f?x?<0,故f?x?不存在两个零点;若a???1,ln??2a??单调递减,在?ln??2a?,???单调递增.又当x?1时f?x?<0,故f?x?不存在两个零点.
综上,a的取值范围为?0,???.
5试题解析:(I)f(x)的定义域为(0,??).当a?4时,
f(x)?(x?1)lnx?4(x?1),f?(x)?lnx?在(1,f(1))处的切线方程为2x?y?2?0. (II)当x?(1,??)时,f(x)?0等价于lnx?令g(x)?lnx?1?3,f?(1)??2,f(1)?0.曲线y?f(x)xa(x?1)?0. x?1a(x?1),则 x?112ax2?2(1?a)x?1g?(x)???,g(1)?0,
x(x?1)2x(x?1)2(i)当a?2,x?(1,??)时,x?2(1?a)x?1?x?2x?1?0,故g?(x)?0,g(x)在
22x?(1,??)上单调递增,因此g(x)?0;
(ii)当a?2时,令g?(x)?0得
x1?a?1?(a?1)2?1,x2?a?1?(a?1)2?1,
由x2?1和x1x2?1得x1?1,故当x?(1,x2)时,g?(x)?0,g(x)在x?(1,x2)单调递减,
共分享92篇相关文档