当前位置:首页 > 专题7:一次函数的图象、性质和应用
与t(分钟)之间的函数关系的图象为图中的折线段OA-AB. (1)请解释图中线段AB的实际意义; (2)试求出小明从家到学校一共走过的路程;
(3)在所给的图中画出s2(千米)与t(分钟)之间函数关系的图象(给相关的点标上字母,指出对应的坐标),并指出图象的形状.
7.【南京市鼓楼区一模】甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,折线BCD表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,根据图象解答下列问题:
(1)求线段CD对应的函数表达式;
(2)求E点的坐标,并解释E点的实际意义;
(3)若已知轿车比货车晚出发2分钟,且到达乙地后在原地等待货车,则当x= 小时,货车和轿车相距30千米.
8.【南京市建邺区二模】小林家、小华家与图书馆依次在一条直线上.小林、小华两人同时各自从家沿直线匀速步行到图书馆借阅图书,已知小林到达图书馆花了20分钟.设两人出发x(分钟)后,小林离小华家的距离为y(米),y与x的函数关系如图所示. (1)小林的速度为 米/分钟,a= ,小林家离图书馆的距离为 米; (2)已知小华的步行速度是40米/分钟,设小华步行时与家的距离为y1(米),请在图中
- 5 -
画出y1(米)与x(分钟)的函数图象; (3)小华出发几分钟后两人在途中相遇?
9.【徐州市二模】【实际情境】
某中学九年级学生步行到郊外春游.一班的学生组成前队,速度为4km/h,二班的学生组成后队,速度为6km/h.前队出发1h后,后队才出发,同时,后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h. 【数学研究】
若不计队伍的长度,如图,折线A-B-C、A-D-E分别表示后队、联络员在行进过程中,离前队的路程y(km)与后队行进时间x(h)之间的部分函数图象. (1)求线段AB对应的函数关系式; (2)求点E的坐标,并说明它的实际意义;
(3)联络员从出发到他折返后第一次与后队相遇的过程中,当x为何值时,他离前队的路程与他离后队的路程相等?
10.【泰州市姜堰区一模】甲乙两地相距400km,一辆轿车从甲地出发,以一定的速度匀速驶往乙地.0.5h后,一辆货车从乙地出发匀速驶往甲地(轿车的速度大于货车的速度),与轿车在途中相遇.此后,两车继续行驶,并各自到达目的地.两车之间的距离y(km)与轿车行驶的时间x(h)的函数图象如图. (1)解释D点的实际意义并求两车的速度; (2)求m、n的值;
- 6 -
(3)若两车相距不超过180千米时能够保持联系,请问货车在行驶过程中与轿车保持联系的时间有多长?
11.【南京市浦口区一模】水池中有水20m3,12:00时同时打开两个每分钟出水量相等且不变的出水口,12:06时王师傅打开一个每分钟进水量不变的进水口,同时关闭一个出水口,12:14时再关闭里另一个出水口,12:20时水池中有水56cm3,王师傅的具体记录如表,设从12:00开始经过tmin池中有水ym3,如图中折线ABCD表示y关于t的函数图象. (1)每个出水口每分钟出水 m3,表格中a= ; (2)求进水口每分钟的进水量和b的值; (3)在整个过程中t为何值时,水池有水16m3
- 7 -
共分享92篇相关文档