当前位置:首页 > (完整word版)2017年浙江省温州市中考数学试卷(含答案解析版),推荐文档
【解答】解:∵点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上, ∴y1=﹣5,y2=10, ∵10>0>﹣5, ∴y1<0<y2. 故选B.
【点评】本题考查了一次函数图象上点的坐标特征,根据点的横坐标利用一次函数图象上点的坐标特征求出y1、y2的值是解题的关键.
7.(4分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=
,则小车上升的高度是( )
A.5米 B.6米 C.6.5米 D.12米
【分析】在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可. 【解答】解:如图AC=13,作CB⊥AB,
∵cosα=∴AB=12, ∴BC=
=,
=132﹣122=5,
∴小车上升的高度是5m. 故选A.
【点评】此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.
8.(4分)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是( )
数学试题卷(W Z )第9页(共4页)
A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3
2
【分析】先把方程(2x+3)+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可.
【解答】解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程, 所以2x+3=1或2x+3=﹣3, 所以x1=﹣1,x2=﹣3. 故选D.
【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
9.(4分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2
EF,则正方形ABCD的面积为( )
A.12S B.10S C.9S D.8S
【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.
【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2 由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b, ∵AM=2∴2a=2∴a=
EF, b, b,
∵正方形EFGH的面积为S, ∴b2=S,
∴正方形ABCD的面积=4a2+b2=9b2=9S, 故选C.
数学试题卷(W Z )第10页(共4页)
【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.
10.(4分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧
,
,
,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…
得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为( )
A.(﹣6,24) B.(﹣6,25) C.(﹣5,24) D.(﹣5,25) 【分析】观察图象,推出P9的位置,即可解决问题.
【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26, 所以P9的坐标为(﹣6,25), 故选B.
【点评】本题考查规律型:点的坐标等知识,解题的关键是理解题意,确定P9的位置.
二、填空题(共6小题,每小题5分,共30分): 11.(5分)分解因式:m+4m= m(m+4) .
【分析】直接提提取公因式m,进而分解因式得出答案. 【解答】解:m+4m=m(m+4).
数学试题卷(W Z )第11页(共4页)
2
2
故答案为:m(m+4).
【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
12.(5分)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 4.8或5或5.2 .
【分析】根据中位数的定义确定整数a的值,由平均数的定义即可得出答案. 【解答】解:∵数据1,3,5,12,a的中位数是整数a, ∴a=3或a=4或a=5,
当a=3时,这组数据的平均数为当a=4时,这组数据的平均数为当a=5时,这组数据的平均数为故答案为:4.8或5或5.2.
【点评】本题主要考查了中位数和平均数,解题的关键是根据中位数的定义确定a的值.
13.(5分)已知扇形的面积为3π,圆心角为120°,则它的半径为 3 . 【分析】根据扇形的面积公式,可得答案. 【解答】解:设半径为r,由题意,得 πr2×
=3π,
=4.8, =5, =5.2,
解得r=3, 故答案为:3.
【点评】本题考查了扇形面积公式,利用扇形面积公式是解题关键.
14.(5分)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:
=
.
和甲、乙完成铺设任务
【分析】设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=的时间相同列出方程即可.
数学试题卷(W Z )第12页(共4页)
共分享92篇相关文档