当前位置:首页 > (word完整版)上学期期末考试初二数学试卷(含答案)
119【答案】-1或2
20【答案】解:⑴3600,20.
⑵①当50?x?80时,设y与x的函数关系式为y?kx?b. 根据题意,当x?50时,y?1950;当x?80,y?3600.
所以,y与x的函数关系式为y?55x?800. ②缆车到山顶的路线长为3600÷2=1800(m), 缆车到达终点所需时间为1800÷180=10(min).
小颖到达缆车终点时,小亮行走的时间为10+50=60(min). 把x?60代入y?55x?800,得y=55×60—800=2500.
所以,当小颖到达缆车终点时,小亮离缆车终点的路程是3600-2500=1100(m). 21【答案】设甲车间每天加工零件x个,则乙车间每天加工零件1.5x个。 2100-9002100-900
根据题意,得:- =12
xx+1.5x解之,得x=60
经检验,x=60是方程的解,符合题意 1.5x=90
答:甲乙两车间每天加工零件分别为60个,90个 23解:(1)①丙种柴油发电机的数量为10-x-y
②∵4x+3y+2(10-x-y)=32
∴y=12-2x
(2)丙种柴油发电机为10-x-y=(x-2)台
W=130x+120(12-2x)+100(x-2) =-10x+1240
x?1依题意解不等式组 12?2x?1 得:3≤x≤5.5
x?2?1∵x为正整数 ∴x=3,4,5
∵W随x的增大而减少 ∴当x=5时 ,W最少为-10×5+1240=1190(元)
24.(1)猜想:BD=2BM ··········································································· 1分
理由如下:
延长DM交BC于点F
∵∠BDE=∠ABC=90°,∴DE∥BC ∴∠DEM=∠FCM
又EM=CM,∠DME=∠FMC,∴△DEM≌△FCM ∴DM=FM,DE=FC
又DA=DE,∴DA=FC,∴BD=BF ∴△BDF是等腰直角三角形
又DM=FM,∴△BDM是等腰直角三角形
A E
DB F C
图①
M
∴BD=2BM ················································································· 4分 (2)成立 ······························································································ 5分
证明:过点C作CF∥ED,交DM的延长线于点F,连接BF 则∠DEM=∠FCM
又EM=CM,∠DME=∠FMC,∴△DEM≌△FCM ∴DM=FM,DE=FC 又DA=DE,∴DA=FC 作AH⊥EC于点H
由∠ADE=∠ABC=90°,得∠DAN=∠DEM,∠BAN=∠BCM ∴∠BAN+∠DAN=∠BCM+∠FCM,即∠BAD=∠BCF 又DA=FC,BA=BC,∴△BAD≌△BCF ∴BD=BF,∠ABD=∠CBF
∵∠ABF+∠CBF=90°,∠ABD+∠ABF=90°,即∠DBF=90° ∴△BDF是等腰直角三角形
又DM=FM,∴△BDM是等腰直角三角形
∴BD=2BM
25.解:(1)过点B过BE⊥x轴,垂足为E
∵A(8,0),B(4,4),∴BE=4,AE=4
∴△ABE为等腰直角三角形,∴∠OAB=45° ···································· 2分 (2)当点M、N重合时,直线l过点A(8,0)或点C(0,4)
当直线l过点A(8,0)时,8+b=0,∴b=-8 此时直线l的解析式为y=x-8
当直线l过点A C(0,4)时,0+b=4,∴b=4
此时直线l的解析式为y=x+4 ······················································· 4分
8分
A
图②
B E
DHMF
C
(3)四边形OABC的面积为1
2
×(4+8)×4=24
共分享92篇相关文档