当前位置:首页 > 【考前三个月】(江苏专用)高考数学 压轴大题突破练 数列
中档大题规范练——数列
1.已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a2a4=64,a1+a5=18. (1)若1
n
(2)设bn=,是否存在一个最小的常数m使得b1+b2+…+bn ?2n+1?Snn均成立,若存在,求出常数m;若不存在,请说明理由. 解 (1)数列{an}为等差数列,因为a1+a5=a2+a4=18, 又a2a4=65,所以a2,a4是方程x2-18x+65=0的两个根, 又公差d>0,所以a2 ?a1+d=5,?所以?① ??a1+3d=13, 所以a1=1,d=4.所以an=4n-3. 由1 即1×81=(4i-3)2,解得i=3. n?n-1? (2)由(1)知,Sn=n×1+2×4=2n2-n, 1111 所以bn==2(-),② ?2n-1??2n+1?2n-12n+1所以b1+b2+…+bn 111111=2(1-3+3-5+…+-) 2n-12n+1=n , 2n+1 n111因为=2-<2,③ 2n+12?2n+1? 1 所以存在m=2使b1+b2+…+bn 令n=2,得2a2-1=S2=1+a2,解得a2=2. 当n≥2时,由2an-1=Sn,2an-1-1=Sn-1, 两式相减得2an-2an-1=an,即an=2an-1. 于是数列{an}是首项为1,公比为2的等比数列. 因此,an=2n-1. 所以数列{an}的通项公式为an=2n-1. (2)由(1)知,nan=n·2n-1. 记数列{n·2n-1}的前n项和为Bn,于是 Bn=1+2×2+3×22+…+n×2n-1,① 2Bn=1×2+2×22+3×23+…+n×2n.② ①-②,得 -Bn=1+2+22+…+2n-1-n·2n=2n-1-n·2n. 从而Bn=1+(n-1)·2n. 即数列{nan}的前n项和为1+(n-1)·2n. 3.设数列{an}的前n项和为Sn,满足2Sn=an+1-2n+1+1,n∈N*,且a1=1,设数列{bn}满足bn=an+2n. (1)求证数列{bn}为等比数列,并求出数列{an}的通项公式; 6n-3 (2)若数列cn=bn,Tn是数列{cn}的前n项和,证明:Tn<3. ?2Sn=an+1-2n+1+1,? (1)解 当n≥2时,由? ??2Sn-1=an-2n+1 ?2an=an+1-an-2n ?an+1=3an+2n, 从而bn+1=an+1+2n+1=3(an+2n)=3bn, 故{bn}是以3为首项,3为公比的等比数列, bn=an+2n=3×3n-1=3n, an=3n-2n(n≥2), 因为a1=1也满足,于是an=3n-2n. 6n-32n-1 (2)证明 cn=bn=, 3n-1 2n-32n-1135 则Tn=30+31+32+…++,① 3n-23n-12n-32n-11135 Tn=+++…++3n,② 33132333n-12n-121222①-②,得3Tn=30+31+32+…+-3n 3n-111- 3n-12n-12 =1+3·1-3n 1-32n-11 =2--3n 3n-12?n+1?=2-3n, n+1 故Tn=3-<3. 3n-1 1 4.已知单调递增数列{an}的前n项和为Sn,满足Sn=2(a2n+n). (1)求数列{an}的通项公式; 1??,n为奇数,a2n+1-1(2)设cn=?求数列{cn}的前n项和Tn. ??3×2an-1+1,n为偶数,1 解 (1)n=1时,a1=2(a21+1),得a1=1, 1 由Sn=2(a2n+n),① 1则当n≥2时,Sn-1=2(a2n-1+n-1),② 1①-②得an=Sn-Sn-1=2(a2n-a2n-1+1), 化简得(an-1)2-a2n-1=0, an-an-1=1或an+an-1=1(n≥2), 又{an}是单调递增数列,故an-an-1=1, 所以{an}是首项为1,公差为1的等差数列,故an=n. 1??,n为奇数,a2n+1-1(2)cn=? ??3×2an-1+1,n为偶数, 当n为偶数时, Tn=(c1+c3+…+cn-1)+(c2+c4+…+cn) 111n=(++…+)+3×(21+23+…+2n-1)+2 22-142-1n2-1n 2?1-42?111n=1×3+3×5+…++3×+2 ?n-1?×?n+1?1-41111111nn =2×(1-3+3-5+…+-)+2×(42-1)+2 n-1n+1n2-2n-4 =2n+1+. 2?n+1? 当n为奇数时, Tn=(c1+c3+…+cn)+(c2+c4+…+cn-1) n-1111 =[++…+]+3×(21+23+…+2n-2)+2 22-142-1?n+1?2-1n-1n-11111111=2×(1-3+3-5+…+n-)+2×(42-1)+2 n+2n2-2n-9 =2n+. 2?n+2? n2-2n-92n+?n为奇数?,??2?n+2? 所以Tn=?n2-2n-4 2n+1+?n为偶数?.??2?n+1? 2x+31 5.已知函数f(x)=3x,数列{an}满足a1=1,an+1=f(an),n∈N*. (1)求数列{an}的通项公式; m-2 0141 (2)令bn=(n≥2),b1=3,Sn=b1+b2+…+bn,若Sn<对一切n∈N*恒成立,2an-1an求最小正整数m. 2 an+32+3an12 解 (1)∵an+1=f(an)=3=3=an+3, an2 ∴{an}是以1为首项,3为公差的等差数列. 221 ∴an=1+(n-1)×3=3n+3. 11 (2)当n≥2时,bn==2121 an-1an ?3n-3??3n+3?= 1911 =2(-), ?2n-1??2n+1?2n-12n+1 9 91 又b1=3=2(1-3), 911111919n ∴Sn=b1+b2+…+bn=2(1-3+3-5+…+-)=2(1-)=, 2n-12n+12n+12n+1m-2 014 ∵Sn<对一切n∈N*恒成立, 2即又 9nm-2 014 <对一切n∈N*恒成立, 22n+1 m-2 01499n9<2,∴≥2, 22n+1 即m≥2 023. ∴最小正整数m为2 023. 6.某工厂为扩大生产规模,今年年初新购置了一条高性能的生产线,该生产线在使用过程中的维护费用会逐年增加,第一年的维护费用是4万元,从第二年到第七年,每年的维护费用均比上年增加2万元,从第八年开始,每年的维护费用比上年增加25%. (1)设第n年该生产线的维护费用为an,求an的表达式; (2)若该生产线前n年每年的平均维护费用大于12万元时,需要更新生产线.求该生产线前n年每年的平均维护费用,并判断第几年年初需要更新该生产线? 解 (1)由题意知,当n≤7时,数列{an}是首项为4,公差为2的等差数列, 所以an=4+(n-1)×2=2n+2. 当n≥8时, 数列{an}从a7开始构成首项为a7=2×7+2=16, 5 公比为1+25%=4的等比数列,
共分享92篇相关文档