云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 1997年北京市海淀区中考数学试卷

1997年北京市海淀区中考数学试卷

  • 62 次阅读
  • 3 次下载
  • 2025/5/31 0:37:41

【考点】圆周角定理;垂径定理;相似三角形的判定与性质. 【专题】证明题. 【分析】连接BD,根据垂径定理可得出AC=BC,继而得出∠1=∠D,判定△BCE∽△DCB,继而利用相似三角形的性质可得出答案. 【解答】证明:连接BD,

∵半径OC⊥弦AB, ∴

=

∴AC=BC,∠1=∠D, ∵∠BCE=∠DCB, ∴△BCE∽△DCB, ∴

=

2

∴BC=CD?CE

∴AC?BC=CE?CD.

【点评】本题考查了圆周角定理、相似三角形的判定与性质,解答本题的关键是熟练掌握圆周角定理及垂径定理的内容. 26.(4分)(1997?海淀区)如图,周长为24的凸五边形ABCDE被对角线BE分为等腰三角形ABE及矩形BCDE,且AB=AE=ED.设AB的长为x,CD的长为y,求y与x之间的函数关系式,写出自变量x的取值范围,并在所给的坐标系中画出这个函数的图象.

第13页(共19页)

【考点】一次函数综合题. 【专题】探究型.

【分析】由四边形BCDE是矩形可知BC=ED,BE=CD,再根据AB=AE=ED=x,CD=y,可得出BC=x,BE=y.因为凸五边形ABCDE的周长为24,所以可得出y与x的函数关系式,根据三角形的三边关系可得出x的取值范围,由x的取值范围画出函数图象即可. 【解答】解:∵四边形BCDE是矩形, ∴BC=ED,BE=CD.

∵AB=AE=ED=x,CD=y, ∴BC=x,BE=y.

∵凸五边形ABCDE的周长为24, ∴y=24﹣4x.

∵AB﹣AE<BE<AB+AE, ∴0<24﹣4x<2x.

∴自变量x的取值范围是4<x<6. 函数的图象如图.

【点评】本题考查的是一次函数综合题,涉及到矩形的性质、三角形的三边关系等相关知识,难度适中.

27.(5分)(1997?海淀区)关于x的方程x﹣mx﹣m﹣1=0①与2x﹣(m+6)x﹣m+4=0②,若方程①的两个实数根的平方和等于方程②的一个整数根,求m的值. 【考点】根与系数的关系;根的判别式. 【专题】计算题. 【分析】设方程①的两个实数根为α,β,利用根与系数的关系表示出两根之和与两根之积,进而表示出两根的平方和,第二个方程表示出两解,分别等于表示出的平方和列出关于m的方程,经检验即可得到满足题意m的值.

222

【解答】解:设方程①的两个实数根为α,β,那么α+β=m,αβ=﹣m﹣1,

第14页(共19页)

∴α+β=(α+β)﹣2αβ=m﹣2(﹣m﹣1)=m+m+2, 把方程②变形为[2x+(m﹣2)][x﹣(m+2)]=0, 解得:x1=﹣

,x2=m+2,

2

22222

若x1为整数根,根据题意,得m+m+2=﹣解这个方程,得m=﹣1, 此时x1=﹣

=不是整数根,不合题意,舍去,

2

若x2为整数根,根据题意,得m+m+2=m+2, 解得:m=0或m=﹣,

当m=0时,方程②的x2=0+2=2是整数,且△1=0﹣4×(﹣1)>0,方程①有两个实数根,符合题意.

当m=﹣时,方程②的x2=﹣+2=不是整数,不合题意,舍去,

∴m=0.

【点评】此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键. 28.(5分)(1997?海淀区)如图,四边形ABCD内接于半圆O,AB为直径,过点D的切线交BC的延长线于点E.若BE⊥DE,AD+DC=40,⊙O的半径为的值.

,求BC的长及tan∠CDB

2

【考点】切线的性质;勾股定理;相似三角形的判定与性质. 【专题】计算题;压轴题.

【分析】连接AC,由AB为直径,利用直径所对的圆周角为直角得到一对直角相等,再由BE垂直于DE得到∠E为直角,进而得到一对同位角相等,利用同位角相等两直线平行得到DE与AC平行,利用两直线平行内错角相等得到一对角相等,再利用弦切角等于夹弧所对的圆周角,等量代换及等角对等边得到AD=DC,由AD+DC=40求出AD=DC=20,由圆四边形的外角等于它的内对角得到一对角相等,再由一对直角相等得到三角形DEC与三角形ABD相似,由AD,DC,AB的长求出CE的长,根据勾股定理求出DE的长,再利用切割线定理求出EB的长,由EB﹣EC即可求出BC的长,根据同弧所对的圆周角相等得到∠CDB=∠CAB,在直角三角形ABC中,利用锐角三角函数定义求出tan∠CAB的值,即为tan∠CDB的值.

【解答】解:连接AC, ∵AB为直径,BE⊥DE, ∴∠ADB=∠ACB=∠E=90°,

第15页(共19页)

∴DE∥AC,

∴∠EDC=∠DCA, ∵ED切圆O于点D, ∴∠EDC=∠DAC, ∴∠DCA=∠DAC, ∴AD=DC, ∵AD+DC=40, ∴AD=DC=20, ∵圆O的半径为∴AB=

,AB为直径,

∵四边形ABCD内接于半圆O, ∴∠DCE=∠DAB, 又∵∠E=∠ADB=90°, ∴△CDE∽△ABD, ∴

=

=

=,

∴CE=AD=×20=12, ∴DE=

=

=16,

∵DE是切线,ECB是割线, ∴ED=EC?EB, ∴EB=

=

=

, ,

2

∴BC=BE﹣CE=

∴AC===32,

∴tan∠CAB===,

∵∠CDB=∠CAB, ∴tan∠CDB=tan∠CAB=则BC=

,tan∠CDB=

, .

第16页(共19页)

搜索更多关于: 1997年北京市海淀区中考数学试卷 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

【考点】圆周角定理;垂径定理;相似三角形的判定与性质. 【专题】证明题. 【分析】连接BD,根据垂径定理可得出AC=BC,继而得出∠1=∠D,判定△BCE∽△DCB,继而利用相似三角形的性质可得出答案. 【解答】证明:连接BD, ∵半径OC⊥弦AB, ∴=, ∴AC=BC,∠1=∠D, ∵∠BCE=∠DCB, ∴△BCE∽△DCB, ∴=2, ∴BC=CD?CE ∴AC?BC=CE?CD. 【点评】本题考查了圆周角定理、相似三角形的判定与性质,解答本题的关键是熟练掌握圆周角定理及垂径定理的内容. 26.(4分)(1997?海淀区)如图,周长为24的凸五边形ABCDE被对角线BE分为等腰三角形AB

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com