当前位置:首页 > 2017届高三高考押题卷 数学(理)(一)教师版
消去y可得:4k1?3x?8k1??k1x1?y1?x?4??k1x1?y1??75?0,
2222?8k?kx?y?44k?34?kx?y?75??0, 由??0,得??????111?1111?1??2??2??化简可得:4x12?100k12?8x1y1k1?4y12?75?0
??16x124y12??1,可得4x12?100??y12,4y12?75??3x12, 由
25753所以上式可化为:?21622y1k1?8x1y1k1?3x12?0, 33x1, 4y1∴?4y1k1?3x1??0,k1??所以椭圆在点A处的切线方程为:分
xx14yy1??1①,··························72575xx24yy2??1②,·······················82575同理可得椭圆在点B的切线方程为:分
4yy175?x1,解得y?75?x2?x1?,··········9分 联立方程①②,消去x得:4yy2x24?x2y1?x1y2?1?751??y2?kx2?3而A,B都在直线l上,所以有?,所以x2y1?x1y2?3x2?3x1,
y?kx?3?11所以y?75?x2?x1?75?x2?x1?2525,即此时的交点的轨迹方程为y?;······11分 ??44?x2y1?x1y2?12?x2?x1?4???53??53?,则椭圆在点A处的切线方程,B0,???????2??2?当直线l的斜率不存在时,直线的方程为x=0,则A?0,为:y?5353①,椭圆在点B的切线方程为:y??,此时无交点. 22综上所述,交点的轨迹方程为y?分
25.······································1242?ax21.(本小题满分12分)已知函数f?x??xe(1)求函数y?f?x?的单调区间;
?1(a是常数),
(2)当x??0,16?时,函数f?x?有零点,求a的取值范围.
【答案】(1)见解析;(2)a?0或a??,?.
8e【解析】(1)根据题意可得,当a=0时,f?x??x?1,函数在?0,???上是单调递增的,在???,0?上
2?12???是单调递减的.···········································1分
?ax2当a≠0时,f??x??2xe?x,因为e?ax>0, (?a)e?ax?e?ax(?ax2?2x)令g?x???ax?2x?0,解得x=0或x?22.·····························3a?2?,???上有g?x??0,即f??x??0,函数y?f?x??a?分
①当a>0时,函数g?x???ax?2x在???,0?,?22单调递减;函数g?x???ax?2x在?0,?上有g?x?≥0,即f??x?≥0,函数y?f?x?单调递a增;························4分 ②当a<0时,函数g?x???ax?2x在???,2?2?????2??,?0,???上有g?x??0,即f??x??0,函数y?f?x?a??单调递增;函数g?x???ax?2x在?,0?上有g?x?≤0,即f??x?≤0,函数y?f?x?单调递?a?2?2减;························5分
综上所述,当a=0时,函数y?f?x?的单调递增区间?0,???,递减区间为???,0?; 当a>0时,函数y?f?x?的单调递减区间为???,0?,?当a<0时,函数y?f?x?的单调递增区间为???,分
(2)①当a=0时,f?x??x?1=0可得x??1,1??0,16?,故a=0可以;·········7分
2?2??2?,???,递增区间为?0,?; ?a??a???2??2?
,0?;·······6,,递减区间为0,??????aa???
②当a>0时,函数y?f?x?的单调递减区间为?(I)若
?2??2?,???,递增区间为?0,?, ?a??a?21??0,16?,解得a?; a8??2??2?x?,16时,是增函数,fx?????时,f?x?是减函数,
a??a?可知:x??0,由f?0???1?0,∴在?0,16?上fmax?x??f??2?4?2??2e?1≥0; a??a
解得?≤a≤,所以分 (II)若
2e2e12?a≤;·······································108e21?[16,??),解得0?a≤; a8函数y?f?x?在?0,16?上递增, 由f?0???1?0,则f?16??256e由
?16a1?1?0,解得a?ln2
2112ln2?,即此时无解,所以?[16,??);·····························1128a2?[16,??)时,此时无解. a分
③当a<0时,函数y?f?x?在?0,16?上递增,类似上面
综上所述,a?0或a??,?.···········································12
8e分
?12???请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.(本小题满分10分)已知在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线
?2t?x?1??2C1的参数方程为:?,曲线C2的极坐标方程:?2?1?sin2???8,[来源:学优高考网] ?y??2?2t??2(1)写出C1和C2的普通方程;
(2)若C1与C2交于两点A,B,求AB的值. 【答案】(1)x?2y?8,y?x?3;(2)
2243. 3【解析】(1)将曲线C2的极坐标方程?21?sin2??8转化为直角坐标方程x?2y?8;····2分
??22?2x?1?t??2将曲线C1的方程?消去t化为普通方程:y?x?3;··············4分 ?y??2?2t??2(2)若C1与C2交于两点A,B,可设A?x1,y1?B(x2,y2),
?y?x?322联立方程组?2,消去y,可得x?2x?3?8,··················6??2?x?2y?8分
?x1?x2?4?整理得3x2?12x?10?0,所以有?10,·····························8
x1x2??3?分 则AB?分
23.(本小题满分10分)已知函数f?x???1?1??x?x?2122?2?x1?x2?2?4x1x2?43.·················1032x?1, 3(1)若不等式f?x?≥-x?a恒成立,求实数a的取值范围; (2)若对于实数x,y,有x?y?1≤,y?【答案】(1)a≤1;(2)见解析.
【解析】(1)根据题意可得f?x?≥-x?a恒成立, 即
13212≤,求证:f?x?≤. 3332x?1+x≥a, 3333?x≥a, 222化简得x?而x?333?x≥是恒成立的, 222所以≥a,解得a≤1;·········································5分
(2)f?x??32321?2?12?22222?1?2?x?1?x???x?y?1?y??≤?|x?y?1|?|y?|?≤????,
3?3?33?33333?3?3?所以f?x?≤.·····················································10分
23
共分享92篇相关文档