云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2017年重庆市中考数学试卷(B卷)含答案

2017年重庆市中考数学试卷(B卷)含答案

  • 62 次阅读
  • 3 次下载
  • 2025/5/4 14:39:57

∴P(2,﹣).

如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.

∵K是CB的中点, ∴k(,﹣∴tan∠KCP=∵OD=1,OC=∴tan∠OCD=

). . , .

∴∠OCD=∠KCP=30°. ∴∠KCD=30°.

∵k是BC的中点,∠OCB=60°, ∴OC=CK.

∴点O与点K关于CD对称. ∴点G与点O重合. ∴点G(0,0).

∵点H与点K关于CP对称, ∴点H的坐标为(,﹣

).

∴KM+MN+NK=MH+MN+GN.

当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH. ∴GH=

=3.

∴KM+MN+NK的最小值为3.

(3)如图3所示:

∵y′经过点D,y′的顶点为点F, ∴点F(3,﹣

).

∵点G为CE的中点, ∴G(2,∴FG=

).

=

),Q′(3,对称,

).

∴当FG=FQ时,点Q(3,当GF=GQ时,点F与点Q″关于y=∴点Q″(3,2

).

当QG=QF时,设点Q1的坐标为(3,a). 由两点间的距离公式可知:a+∴点Q1的坐标为(3,﹣

).

)或′(3,

)或(3,2

=

,解得:a=﹣

综上所述,点Q的坐标为(3,或(3,﹣

).

【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数的解析式、轴对称最短路径问题、等腰三角形的定义和性质,找到KM+MN+NK取得最小值的条件是解答问题(2)的关键;分为QG=FG、QG=QF,FQ=FQ三种情况分别进行计算是解答问题(3)的关键.

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

∴P(2,﹣). 如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M. ∵K是CB的中点, ∴k(,﹣∴tan∠KCP=∵OD=1,OC=∴tan∠OCD=). . , . ∴∠OCD=∠KCP=30°. ∴∠KCD=30°. ∵k是BC的中点,∠OCB=60°, ∴OC=CK. ∴点O与点K关于CD对称. ∴点G与点O重合. ∴点G(0,0). ∵点H与点K关于CP对称, ∴点H的坐标为(,﹣). ∴KM+MN+NK=MH+MN+GN. 当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH. ∴GH==3. ∴KM+MN+NK的最小值为3.

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com