当前位置:首页 > 高等数学模拟试卷001
15. 解:
??xdxdy??dy?D01y0111xdx??y2dy?y3?
0260611 y D O x
三. 16.
解
:
111?cos?121??1?2xxlimx?cos?1??lim?lim?lim?0
x???x??x??2x11x?x??xx1???2x?1????1 17. 解:limf(x)?lim?1?ex?1x?1???? 要使f(x)在x?1处连续,应有k?f(1)?limf(x)?1
x?1 18. 解:y'?e?exxe?1,y'x?1?2e,切线的斜率为
k?y'x?1?2e
切线方程为:y?2e?1?2e?x?1?,即y?2ex?1 19. x?x是f(x)的原函数?f?x??2x?1?f'?x??2
2
?xf'(x)dx??2xdx?x0011210?1
解
:
20.
?z??2z???z?xxx??xesiny???e?xe?siny,?????x?1?excosy?x?x?x?y?y??x?
?z?2z?x ?xecosy,??xexcosy???x?1?excosy
?y?y?x?x 21. ?1的法向量为n1?1,2,1???,?2的法向量
?n2???2,1,1?
所求平面?与?1、?2都垂直,故?的法向量为
n?n1?n2?1????i?j2?k1???1?i?3j?5k
?21 所求平面又过点M01,?1,1,故其方程为:
??1??x?1??3?y?1??5?z?1??0
即:x?3y?5z?9?0 22. 解:un?1n?n?0
2满足(i)un?un?1,(ii)
n??limun?limn??1n?n2 由莱布尼兹判别法知级数收敛
12un1n?n?1?lim 又因lim,令Vn?,则
n??1n??1nnn?
???1?n?1n?11n2?n??n?1?1n2?n与
?V??n同时发
nn?1n?1??1散。
故原级数条件收敛。 23.
y?e??p(x)dx??q(x)e1x?p(x)dx11??xdx?1?xdxdx?c?eedx?c??2?
?x??? ?eln?1lnx?1?1?1?edx?c?dx?c??2?????lnx?c? ?x?x??x?xlnx x 由yx?1?0?0?c,故所求特解为y? 24. 因区域关于y轴对称,而x是奇函数,故
??xdxdy?0
Dy2??ydxd?y2?dx???ydxd?DD1011x3ydy
12 ?2?y0211x3dx??(1?x6)dx0111?6???x?x7???7?07y(1,1)D10x 25. 解:特征方程:r2?4r?3?0?r1??1,r2??3 故对应的齐次方程y\?4y'?3y?0的通解为y?c1e?x?c2e?3x (1) 因???3是特征值,故可设特解为 ?3xy*?Axe y*'?Ae?3x?3Axe?3x
y*\??3Ae?3x?3Ae?3x?3Axe?3x??6Ae?3x?9Axe?3x 代入原方程并整理得:?2Ae y*???3x??9?9e?3x?A??
29?3xxe 2?x 故所求通解为:y?c1e?c2e?3x?9?3xxe 2 26. f'(x)?lnx,令f'(x)?lnx?0得驻点x0?1,又
f\x)?1,f\1)?1?0 x 故x0是f(x)的极小值点,极小值为: f(1)??112lntdt??tlnt?t?1?211?ln2?1? 21?0?x?0?,曲线是上凹的 x1111 27. f(x)?????x?2??x?3?x?2x?32 因f\x)?
11?x2?11 x31?3?1??x?1??x?1?n?1??????????????1??n?1?n?1?xn??2?x?2?2n?0?2?3n?0?3?3??2n?0nn
??f?4?2x?0??x? 28. 解:令?
?f???4?2y?0???y 解得唯一的驻点(2,-2)
?2f?2f?2f ?2??2,?0,2??2
?x?y?x?y ?A??2,B?0,C??2
由AC?B?4?0且A??2?0,知(2,-2)是f(x,y)的极大值点
极大值为f(2,?2)?4(2?2)?4?4?8
共分享92篇相关文档