µ±Ç°Î»ÖãºÊ×Ò³ > µÚÒ»ÕÂ×Ô²âÌâ
Ò»¡¢
µÚÒ»Õ ×Ô²âÌâ
µ¥ÏîÑ¡ÔñÌ⣨ÿÌâ3·Ö£¬¹²27·Ö£©£®
1£®y?lg(x?1)?12?x£® ?arccosxµÄ¶¨ÒåÓòÊÇ£¨ £©
£¨A£© (?1,??)£» £¨B£© (?1,1]£» £¨C£© (?1,1)£® 2£®Éèf(x)ÊǶþ´Î¶àÏîʽ£¬f(0)?4, f(1)?2, f(2)?1£¬Ôòf(x)? ( ) £¨A£©
1211(x?5x?8)£» £¨B£© (x2?x?4)£» £¨C£© (x2?4x?8)£® 2223£®ÏÂÁк¯Êýf(x)Óëg(x)ÊÇÏàͬµÄÓУ¨ £©£®
£¨A£©f(x)?cos(arccosx) , g(x)?x ÆäÖÐx?1£» £¨B£©f(x)?x?3 , g(x)?£¨C£©f(x)?lg(4£®Éèf(x)?(x?3)2£»
x?1) , g(x)?lg(x?1)?lg(x?1)£® x?11,g(x)?1?x, Ôòf[g(x)]? ( )£® x111£¨A£©1?£» £¨B£©1?£» £¨C£© £®
x1?xxx?x05£®limf(x)?A(AΪ³£Êý)£¬Ôòf(x)ÔÚx0´¦( )£®
£¨A£©Ò»¶¨Óж¨Ò壻 £¨B£©Ò»¶¨ÎÞ¶¨Ò壻 £¨C£© ²»Ò»¶¨Óж¨Ò壮
6£®µ±x?0ʱ£¬ÏÂÁбäÁ¿ÊÇÎÞÇîСÁ¿µÄÊÇ£¨ £©£®
1£¨A£©sin£» £¨B£©ex£» £¨C£©ln(1?x2)£» £¨D£©ex£®
x1?ex,x?07£®Éèf(x)??2 ÔÚµãx?0Á¬Ðø£¬ÔòaµÄÖµµÈÓÚ£¨ £©£®
?x?2a,x?0£¨A£©0 £» £¨B£©1£» £¨C£©?1£» £¨D£©8£®Èôlimxn?a?0£¬Ôò£¨ £©£®
n???1£® 2£¨A£©ËùÓÐxn?0 £» £¨B£©´æÔÚN£¬µ±n?Nʱ£¬xn?0£» £¨C£©ËùÓÐxn?a£» £¨D£©Ò»¶¨ÓÐnʹxn?a£® 9£®Óëlimxn?a²»µÈ¼ÛµÄÃüÌâÓУ¨ £©£®
n???£¨A£©¶ÔÈθø??0,ÂäÔÚN(a,?)Ö®ÍâµÄxnÖÁ¶àÓÐÏÞ¸ö£» £¨B£©¶ÔÈθø??0,ÂäÔÚN(a,?)Ö®ÄÚµÄxnÖÁ¶àÓÐÏÞ¸ö£»
£¨C£©¶ÔÈθø??0,´æÔÚN£¬µ±n?Nʱ£¬xn?a?k?? (kΪÕý³£Êý)£® ¶þ¡¢
Ìî¿ÕÌ⣨ÿÌâ3·Ö£¬¹²33·Ö£©£®
1£®Éèf(3x)?2x?1, f(a)?5£¬Ôòa=________£» 2£®Éèf(x)?1?x£¬Ôòf[f(x)]?________£» 1?x3£®Éèf(x)?x3?1,Ôòf(x2)? ________£» 4£®Éèf(x)?4x?3,Ôòf[f(x)?2]?________£» 5£®Éèf(x?11)?x2?2?3£¬Ôòf(x)?________£» xx6£®Éèf(7£®lim8£®limn????n1x?1)?£¬Ôòf(x)?________£» x2x?12?n?n?________£»
?ln(1?sinx)?________£»
x?0tan2x?3ex,x?09£®Éèf(x)??ÔÚx?0Á¬Ðø£¬Ôòa?________£»
2x?a,?0?4x2?3?ax?b,limf(x)?0£¬Ôòa?________£¬b?________£® 10£® Éèf(x)?x??x?1x2?2x?k?4£¬Ôòk?________£® 11£® limx?3x?3Èý£®Çó½âÏÂÁи÷Ì⣨ÿÌâ8·Ö£¬¹²40·Ö£©£® 1£®²¹³ä¶¨Òåf(0)£¬Ê¹f(x)?ln(1?2x)ÔÚx?0Á¬Ðø£®
arcsin3x11(?)2£®Çóf(x)?xx?1µÄ¼ä¶Ïµã²¢Ö¸Ã÷ÀàÐÍ£®
11(?)x?1x3£®Éèf(x)ÔÚ[a,b]ÉÏÁ¬Ðø£¬ÎÞÁãµã£¬ÇÒf(a)?0£»ÊÔÈ·¶¨f(b)µÄ·ûºÅ£®
4£®Ö¤Ã÷x?0ʱ£¬
1?x?1¡«(4?x?2)£® 25£®Ö¤Ã÷ÔÚÇø¼ä(0,2)ÄÚÖÁÉÙÓÐÒ»µãx0ʹex0?2?x0£®
¹²·ÖÏí92ƪÏà¹ØÎĵµ