当前位置:首页 > 小升初数学典型应用题解析
鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)
【解题思路和方法】 解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔.如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔.这类问题也叫置换问题.通过先假设,再置换,使问题得到解决.
例1 长毛兔子芦花鸡,鸡兔圈在一笼里.数数头有三十五,脚数共有九十四.请你仔细算一算,多少兔子多少鸡?
解 假设35只全为兔,则
鸡数=(4×35-94)÷(4-2)=23(只) 兔数=35-23=12(只) 也可以先假设35只全为鸡,则
兔数=(94-2×35)÷(4-2)=12(只) 鸡数=35-12=23(只) 答:有鸡23只,有兔12只.
例2 2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?
解 此题实际上是改头换面的“鸡兔同笼”问题.“每亩菠菜施肥(1÷2)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(3÷5)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应.假设16亩全都是菠菜,则有
白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)
答:白菜地有10亩.
例3 李老师用69元给学校买作业本和日记本共45本,作业本每本 3 .20元,日记本每本0.70元.问作业本和日记本各买了多少本?
解 此题可以变通为“鸡兔同笼”问题.假设45本全都是日记本,则有 作业本数=(69-0.70×45)÷(3.20-0.70)=15(本)
日记本数=45-15=30(本) 答:作业本有15本,日记本有30本.
例4 (第二鸡兔同笼问题)鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只? 解 假设100只全都是鸡,则有
兔数=(2×100-80)÷(4+2)=20(只) 鸡数=100-20=80(只)
答:有鸡80只,有兔20只.
例5 有100个馍100个和尚吃,大和尚一人吃3个馍,小和尚3人吃1个馍,问大小和尚各多少人?
解 假设全为大和尚,则共吃馍(3×100)个,比实际多吃(3×100-100)个,这是因为把小和尚也算成了大和尚,因此我们在保证和尚总数100不变的情况下,以“小”换“大”,一个小和尚换掉一个大和尚可减少馍(3-1/3)个.因此,共有小和尚 (3×100-100)÷(3-1/3)=75(人)
共有大和尚 100-75=25(人) 答:共有大和尚25人,有小和尚75人. 21 方阵问题
【含义】 将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题.
【数量关系】 (1)方阵每边人数与四周人数的关系: 四周人数=(每边人数-1)×4 每边人数=四周人数÷4+1 (2)方阵总人数的求法: 实心方阵:总人数=每边人数×每边人数 空心方阵:总人数=(外边人数)
-(内边人数)
内边人数=外边人数-层数×2 (3)若将空心方阵分成四个相等的矩形计算,则:
总人数=(每边人数-层数)×层数×4
【解题思路和方法】 方阵问题有实心与空心两种.实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定.
例1 在育才小学的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?
解 22×22=484(人) 答:参加体操表演的同学一共有484人.
例2 有一个3层中空方阵,最外边一层有10人,求全方阵的人数. 解 10-(10-3×2) =84(人) 答:全方阵84人.
例3 有一队学生,排成一个中空方阵,最外层人数是52人,最内层人数是28人,这队学生共多少人?
解 (1)中空方阵外层每边人数=52÷4+1=14(人) (2)中空方阵内层每边人数=28÷4-1=6(人) (3)中空方阵的总人数=14×14-6×6=160(人)
答:这队学生共160人.
例4 一堆棋子,排列成正方形,多余4棋子,若正方形纵横两个方向各增加一层,则缺少9只棋子,问有棋子多少个?
解 (1)纵横方向各增加一层所需棋子数=4+9=13(只)
(2)纵横增加一层后正方形每边棋子数=(13+1)÷2=7(只) (3)原有棋子数=7×7-9=40(只)
答:棋子有40只.
例5 有一个三角形树林,顶点上有1棵树,以下每排的树都比前一排多1棵,最下面一排有5棵树.这个树林一共有多少棵树?
解 第一种方法: 1+2+3+4+5=15(棵) 第二种方法: (5+1)×5÷2=15(棵) 答:这个三角形树林一共有15棵树. 21 方阵问题
【含义】 将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题.
【数量关系】 (1)方阵每边人数与四周人数的关系: 四周人数=(每边人数-1)×4 每边人数=四周人数÷4+1 (2)方阵总人数的求法: 实心方阵:总人数=每边人数×每边人数 空心方阵:总人数=(外边人数)
-(内边人数)
内边人数=外边人数-层数×2 (3)若将空心方阵分成四个相等的矩形计算,则: 总人数=(每边人数-层数)×层数×4
【解题思路和方法】 方阵问题有实心与空心两种.实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定.
例1 在育才小学的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?
解 22×22=484(人) 答:参加体操表演的同学一共有484人.
例2 有一个3层中空方阵,最外边一层有10人,求全方阵的人数. 解 10-(10-3×2) =84(人) 答:全方阵84人.
例3 有一队学生,排成一个中空方阵,最外层人数是52人,最内层人数是28人,这队学生共多少人?
解 (1)中空方阵外层每边人数=52÷4+1=14(人) (2)中空方阵内层每边人数=28÷4-1=6(人) (3)中空方阵的总人数=14×14-6×6=160(人)
答:这队学生共160人.
例4 一堆棋子,排列成正方形,多余4棋子,若正方形纵横两个方向各增加一层,则缺少9只棋子,问有棋子多少个?
解 (1)纵横方向各增加一层所需棋子数=4+9=13(只)
(2)纵横增加一层后正方形每边棋子数=(13+1)÷2=7(只) (3)原有棋子数=7×7-9=40(只)
答:棋子有40只.
例5 有一个三角形树林,顶点上有1棵树,以下每排的树都比前一排多1棵,最下面一排有5棵树.这个树林一共有多少棵树?
解 第一种方法: 1+2+3+4+5=15(棵) 第二种方法: (5+1)×5÷2=15(棵) 答:这个三角形树林一共有15棵树. 22 商品利润问题
【含义】 这是一种在生产经营中经常遇到的问题,包括成本、利润、利润率和亏损、亏损率等方面的问题.
共分享92篇相关文档