当前位置:首页 > 天津科技大学博士入学考试-微生物学知识点整理
③革兰氏染色机理
革兰氏染色根据1884年革兰姆·克里斯琴(Christian Gram)发明的染色反应,真细菌常常分成两类。对染色步骤反应的差别是由于两类细菌的细胞外膜结构。革兰氏阳性细菌有单一的膜称作细胞膜(或原生质膜),周围被厚的肽聚糖层包围(20~80nm)。革兰氏阴性细菌只有一薄层肽聚糖(1—3nm),但是在肽聚糖层外边,仍有另一层的外膜,作为另外的屏障(图2.3)。
革兰氏染色步骤如下:固定过的细胞用暗染色例如结晶紫染色,接着加碘液媒染,细菌细胞壁内由于染色形成结晶紫与碘的复合物。随后加酒精从薄的细胞壁中洗出结晶紫与碘暗染色的复合物,但是结晶紫—碘复合物不能从厚的细胞壁中洗出。最后,用较浅的石炭酸复红复染。加石炭酸复红染色,使脱色的细胞呈粉红色,但在暗染色的细胞中没有看到粉红色,仍保持第一次的染色结果。保持原来染色(厚的细胞壁)的细胞称作革兰氏阳性,在光学显微镜下呈现蓝紫色。脱色的细胞(薄的细胞壁和外膜)称作革兰氏阴性,染成粉红色或淡紫色。
表2.2 革兰氏染色程序和结果
步 骤 初 染 媒染剂 脱 色 复 染 60s ④化学组成与超微结构
a 革兰氏阳性细菌(Gram positive)
革兰氏阳性细菌细胞壁具有较厚(30~40nm)而致密的肽聚糖层,多达20层,占细胞壁的成分60-90%,它同细胞膜的外层紧密相连(见图2.4)。
有的革兰氏阳性细菌细胞壁中含有磷壁酸(teichoi-acid),也即胞壁质(murein)。
方 法 结晶紫30s 碘液30s 95%乙醇10—20s 蕃红(或复红)30—结 果 阳性(G+) 紫 色 仍为紫色 保持紫色 仍显紫色 阴性(G-) 紫 色 仍为紫色 脱去紫色 红 色 ? b 革兰氏阴性细菌(Gram negative)
外膜 革兰氏阴性细菌特殊的是外膜上含有许多独特的结构(见图示2.5),如把外膜与肽聚糖层连接起来的布朗(Braun’s)脂蛋白,使营养物被动运输通过膜的[膜]孔蛋白和起保护细胞
作用的脂多糖(LPS)。脂多糖也称为内毒素,对哺乳动物有高度毒性。
G-细菌细胞壁外膜的基本成分是脂多糖(lipopolysaccharide LPS),此外还有磷脂、多糖、和蛋白质。外膜被分为脂多糖层(外)、磷脂层(中)、脂蛋白层(内)。
肽聚糖层 G-细菌细胞壁肽聚糖层很薄,约有2-3nm厚。它与外膜的脂蛋白层相连。 周质空间 周质空间(periplasmic space,即壁膜间隙)是革兰氏阴性细菌细胞膜与外膜两膜之间的一个透明的区域(见图2.3)。它含有与营养物运输和营养物进入有关的蛋白质,有:营养物进入细胞的蛋白;营养物运输的酶,如蛋白[水解]酶;细胞防御有毒化合物,如破坏青霉素的?-内酰胺酶。革兰氏阳性细菌以上这些酶常分泌到胞外周围,革兰氏阴性细菌则依靠它的外膜,保持这些酶与菌的紧密结合。
⑤ G+与G-菌的细胞壁的特征比较 表2.3 两类细胞壁的特征比较
特 征 肽聚糖 类脂 外膜 壁质间隙 细胞状态 酸消化的效果 对染料和抗生素的敏感性 G+ 细菌 层厚 极少 缺 很薄 僵硬 原生质体 很敏感 G- 细菌 层薄 脂多糖 有 较厚 僵硬或柔韧 原生质球 中度敏感 溶菌酶、青霉素作用机制 溶菌酶是一种碱性球蛋白,分子中碱性氨基酸、酰胺残基和芳香族氨,酸的比例较高,酶的活动中心是天冬氨酸和谷氨酸。
溶菌酶是一种专门作用于微生物细胞壁的水解酶,称包胞壁质酶或N-乙酰胞壁质聚糖水解酶,它专一地作用于肽多糖分子中N-乙酰胞壁酸与N-乙酰氨基葡萄糖之间的β-1,4键,从而破坏细菌的细胞壁,使之松驰而失去对细胞的保护作用,最终使细菌溶解死亡。也可以直接破坏革兰氏阳性菌的细胞壁,而达到杀菌的作用,这主要是因为革兰氏阳性细菌的细胞壁主要是由胞壁质和磷酸质组成,其中胞壁质是由杂多糖和多肽组成的糖蛋白,这种多糖正是由N-乙酰胞壁酸与N-乙酰氨基葡萄糖之间的β-1,4键联结的。对某些革兰氏阴性菌,如埃希氏大肠杆菌,伤寒沙门氏菌,也会受到溶菌酶的破坏。溶菌酶是母乳中能保护婴儿免遭病毒感染的一种有效成分,它能通过消化道而保持其活性状态,溶菌酶还可以使婴儿肠道中大肠杆菌减少,促进双歧杆菌的增加,还可以促进蛋白质的消化吸收。
青霉素是B-内酰胺抗生素,在细胞繁殖期起杀菌作用。 青霉素作用机制是干扰细菌细胞壁的合成。 青霉素通过抑制细菌细胞壁四肽侧链和五肽交连桥的结合而阻碍细胞壁合成而发挥杀菌作用。青霉素的结构与细胞壁的成分粘肽结构中的D-丙氨酰-D-丙氨酸近似,可与后者竞争转肽酶,阻碍粘肽的形成,造成细胞壁的缺损,使细菌失去细胞壁的渗透屏障,对细菌起到杀灭作用。
其对革兰阳性菌有效,由于革兰阴性菌缺乏五肽交连桥而青霉素对其作用不大。
青霉素对溶血性链球菌等链球菌属,肺炎链球菌和不产青霉素酶的葡萄球菌具有良好抗菌作用。对肠球菌有中等度抗菌作用,淋病奈瑟菌、脑膜炎奈瑟菌、白喉棒状杆菌、炭疽芽孢杆菌、牛型放线菌、念珠状链杆菌、李斯特菌、钩端螺旋体和梅毒螺旋体对本品敏感。本品对流感嗜血杆菌和百日咳鲍特氏菌亦具一定抗菌活性,其他革兰阴性需氧或兼性厌氧菌对本品敏感性差.本品对梭状芽孢杆菌属、消化链球菌、厌氧菌以及产黑色素拟杆菌等具良好抗菌作用,对脆弱拟杆菌的抗菌作用差。
4种缺壁细菌的形成、特点和实际应用 ⑥细胞壁缺陷细菌
缺壁细胞共有四类;
L-型细菌指细菌在特定条件下,由基因自发突变而形成的的遗传性稳定的细胞壁缺陷菌株,多形态,有的可通过细菌滤器而称过滤形细菌,在固体培养基上形成\油煎蛋似\的小菌落。
球状体是指在人为条件下,用溶菌酶去除革兰氏阴性细菌细胞壁或用青霉素抑制革兰氏阴性细菌新生细胞壁合成后残留着部分细胞壁而形成的细菌细胞,它呈圆球形。
原生质体是指在人为条件下,用溶菌酶除尽应有的细胞壁或用青霉素抑制新合成的细胞壁后,所得到的仅有一层细胞膜裹着的圆球状渗透敏感细.一般由革兰氏阴性细菌形成
支原体是在长期进货过程中形成的,适应自然生活条件的无细胞壁的原核生物.因它的细胞膜中含有一般原生物成没有的甾醇.所以即使缺乏细胞壁,其细胞膜仍有较高的机械强度.
上述原生质体的球状体的共同特点是:无完整的细胞壁,细胞呈球状,对渗透压极其敏感,革兰染色阴性,即使有鞭毛也无法运动,对相应噬菌体不敏感,细胞不能分裂,等等.当然,如在形成原生质体或球状体以前已有噬菌体浸入,它仍能正常复制,增殖和分裂;同样,如在形成原生质体以前正在形成芽孢,则该芽孢仍能正常形成.原生质体或球状体比正常有细胞壁的细菌更不容易导入外源遗传物质,故是研究遗传规律的进行原生质体育种的良好实验材料.
液态镶嵌模型
原生质膜(细胞膜)埋藏在磷脂双分子层中的是有各种功能的蛋白(图2.6),包括转运蛋白、能量代谢中的蛋白和能够对化学刺激检测和反应的受体蛋白。整合蛋白(integral)是完全地与膜连接而且贯穿全膜的蛋白,所以这些蛋白在此区域中有疏水性氨基酸埋藏在脂中。外周蛋白(peripheral proreins)是由于磷脂带正电荷极性头,只是通过电荷作用与膜松散连接的一类,用盐溶液洗涤可以从纯化的膜上除去。脂类和蛋白质均在运动,而且是彼此之间相对运动。这就是被广泛接受的称作液态镶嵌模式的细胞膜结构模型。
芽孢耐热机制 ⒈芽孢的含水率低,38%~40%。 ⒉芽孢壁厚而致密,分三层:外层是芽孢外壳,为蛋白质性质。
中层为皮层,由肽聚糖构成,含大量2,6-吡啶二羧酸。内层为孢子壁,由肽聚糖构成,包围芽孢细胞质和核质。芽孢萌发后孢子壁变为营养细胞的细胞壁。
⒊芽孢中的2,6-吡啶二羧酸(dipicolinic acid 简称DPA)含量高,为芽孢干重的5%~15%。吡啶二羧酸以钙盐的形式存在,钙含量高。在营养细胞和不产芽孢的细菌体内未发现2,6-吡啶二羧酸。芽孢形成过程中,2,6-吡啶二羧酸随即合成,芽孢就具有耐热性,芽孢萌发形成营养细胞时,2,6-吡啶二羧酸就消失,耐热性就丧失。
⒋含有耐热性酶。
渗透调节皮层膨胀学说:芽孢衣对多价阳离子和水分的透性很差皮层的离子强度很高,产生极高的渗透压夺取芽孢核心的水分,结果造成皮层的充分膨胀。核心部分的细胞质却变得高度失水,因此,具极强的耐热性。
1、 病毒粒子的结构 核壳(nucleo-capsid)病毒主要由壳体和核酸二部分构成,二者统称核壳。
壳粒(capsomer) 是构成病毒粒子的最小形态单位,每个壳粒由1-6个同种多肽分子折叠缠绕而成的蛋白质亚单位。也称为衣壳粒
壳体(capsid) 由壳粒以对称的形式,有规律地排列成杆状、球状、廿面体或其他形状,构成病毒的外壳。也称作衣壳,蛋白质外壳。
包膜(envelope) 在壳体外层还具有一层由病毒编码的封套,有包膜病毒粒子是以出芽的方式穿过被侵染细胞的核膜或原生质膜。包膜可能含有少量的糖蛋白,例如人类免疫缺陷性病毒(HIV),也可能含有大量的糖蛋白,例如单纯疤疹病毒(HSV)。病毒的包膜上具有受体,它能使粒子附着并感染宿主细胞。
病毒的对称性 病毒的衣壳具有螺旋体对称或二十面体对称。在很多情况下,衣壳被一种膜状结构包围(病毒包膜)。螺旋体对称可以看作蛋白亚基通过有序的螺旋方式,排列在病毒核酸周围,二十面体是一种有规则的立体结构,它由许多蛋白亚基的重复聚集组成,从而形成一种类似于球形的结构。
病毒的核酸 病毒基因组在大小、结构和核昔酸的组成上是多种多样的,有线状、环状、双链DNA(dsDNA)、单链DNA(ssDNA)、双链RNA(dsRNA)、单链RNA(ssRNA)、分段的或者不分段的。
病毒的基因组携带有作为病毒遗传密码的核酸序列。在被感染的细胞中,基因组被转录(transcribed)和翻译(translated)成氨基酸序列,正是由这些氨基酸序列组成了病毒的蛋白,不论是结构蛋白,还是非结构蛋白。
细菌噬菌体(bacteriophage),通常称为噬菌体(phage),是侵染细菌的病毒。它们是专性细胞内寄生物,可以噬菌体颗粒在细菌细胞外存在,但只能在细胞内繁殖。它们由核酸基因组和四周称为衣壳的病毒外壳包围而构成。噬菌体具有侵染细菌的能力,而且在细胞内指令合成噬菌体的成分。
典型噬菌体生活周期(烈性噬菌体裂解性生活史) 一个噬菌体典型的生活周期,从噬菌体在细菌细胞表面的特异受体吸附开始,随后遗传物质注入宿主。细菌含有降解外源DNA的限制修饰系统,许多侵染是不成功的。接着核酸复制开始,噬菌体基因编码的酶被合成。最后,合成噬菌体衣壳蛋白,装配成新的噬菌体外壳,同时包装一个拷贝的基因。然后,噬菌体释放,普遍通过裂解进入周围培养基。也即经过吸附,侵入,复制,组装和释放5个阶段。
吸附(附着)(adsorption,attachment)。噬菌体侵染宿主通过附着在细胞表面的特异受体上。受体的性质不同,是蛋白质或多糖,它们可在任何时间存在细胞表面或只在某些条件下产生。T4噬菌体结合在大肠杆菌外膜的脂蛋白上(T2、T4、T7、的吸附位点是脂多糖,T2、T6的吸附位点是脂蛋白),而?噬菌体只有当细菌在含有麦芽糖的培养基上生长时,才能结合在外膜的麦
共分享92篇相关文档