云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 中南大学2012年硕士研究生入学考试试题

中南大学2012年硕士研究生入学考试试题

  • 62 次阅读
  • 3 次下载
  • 2025/5/23 0:20:40

中南大学2012年硕士研究生入学考试试题 考试科目代码及名称:712数学分析 一、(20分)计算下列各题:

1、设x0?7,x1?3,3xn?2xn?1?xn?2(n?2),求limxn;

n?? 2、limn???n?pnsinxxdx,(p为一正整数)

二、(30分)计算下列积分的值:

1、??sgn(xy?1)dxdy,其中D={(x,y)|0?x?2,0?y?2};

D 2、?ecosydy?esinydx,其中L为圆周y?1?x2上从点A(1,0)到点B(?1,0)的一

Lxx段弧; 3、????e2y2dzdx,其中?为y?z?x与平面y?1,y?2所围成立体表面的外侧。

22z?x三、(20分)设f(x,y)?x?y?(x,y),其中?(x,y)在点(0,0)的一个领域内连续,试证明函数f(x,y)在(0,0)点处可微的充要条件是?(0,0)?0。

x四、(20分)设f(x,y)为奇函数,在(??,?)内连续且单调递增,F(x)?证明:

1. F(x)为奇函数;

2. F(x)在[0,?)上单调递减。

?(x?3t)f(t)dt,

0''五、(15分)设函数f(x)在[a,b]上有连续的导数,且f(a)?f(b)?0,f?(a)f?(b)?0,

证明f(x)在(a,b)内至少存在一个零点。

?六、(15分)设

?ai?1n是数项级数,f(x)是定义在(??,?)上的函数,使得

f()?an(n?1,2,...),且f''(x)在x?0点处存在,证明:?an绝对收敛的充分必要条件nn?11?是:f(0)?f'(0)?0。

?七、(15分)在[??,?]上展开函数f(x)?x为Fourier级数,并证明?n?121n2??26。

??八、(15分)证明I(?)?致收敛。

?0xe??xdx在[?0,??)(?0?0)上一致收敛,但在(0,??)内非一

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

中南大学2012年硕士研究生入学考试试题 考试科目代码及名称:712数学分析 一、(20分)计算下列各题: 1、设x0?7,x1?3,3xn?2xn?1?xn?2(n?2),求limxn; n?? 2、limn???n?pnsinxxdx,(p为一正整数) 二、(30分)计算下列积分的值: 1、??sgn(xy?1)dxdy,其中D={(x,y)|0?x?2,0?y?2}; D 2、?ecosydy?esinydx,其中L为圆周y?1?x2上从点A(1,0)到点B(?1,0)的一Lxx段弧; 3、????e2y2dzdx,其中?为y?z?x与平面y?1,y?2所围成立体表面的外侧。 22z?x三、(20分)设f(x,y)?x?y?(x,y),其中?(x,y)在点(0,0)的一个领

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com