云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > (完整word)2018届高三年级数学二轮复习_数列专题与答案

(完整word)2018届高三年级数学二轮复习_数列专题与答案

  • 62 次阅读
  • 3 次下载
  • 2025/5/5 15:50:19

WORD格式..可编辑

[针对训练]

n2+n

1.(2014·湖南高考)已知数列{an}的前n项和Sn=,n∈N*.

2

(1)求数列{an}的通项公式; (2)设bn=2an+(-1)nan,求数列{bn}的前2n项和.

1??n

2.(2015·山东高考)已知数列{an}是首项为正数的等差数列,数列?a·a?的前n项和为.

n+1?2n+1?n

(1)求数列{an}的通项公式; (2)设bn=(an+1)·2an,求数列{bn}的前n项和Tn.

.考点三、数列的综合应用

22【典例4】 (2015·陕西汉中质检)正项数列{an}的前n项和Sn满足:S2n-(n+n-1)Sn-(n+n)=0.

(1)求数列{an}的通项公式an;

n+15*,都有T<. (2)令bn=,数列{b}的前n项和为T.证明:对于任意的n∈Nnnn

64(n+2)2a2n

an

变式: (2015·辽宁大连模拟)数列{an}满足an+1=,a=1.

2an+11

专业知识 整理分享

WORD格式..可编辑

11111n

(1)证明:数列{}是等差数列;(2)求数列{}的前n项和Sn,并证明++…+>.

ananS1S2Snn+1

【巩 固 训 练 】

一、选择题

1.(2015·浙江高考)已知{an}是等差数列,公差d不为零,前n项和是Sn.若a3,a4,a8成等比数列,则( )

A.a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>0

2.(2015·保定调研)在数列{an}中,已知a1=1,an+1=2an+1,则其通项公式为an=( )

A.2n-1 B.2n1+1 C.2n-1 D.2(n-1)

113.(预测题)已知数列{an}满足an+1=+an-a2n,且a1=,则该数列的前2 015项的和等于( ) 22

3 023

A. B.3 023 C.1 512 D.3 024

2

4.(2015·长春质检)设数列{an}的前n项和为Sn,且a1=a2=1,{nSn+(n+2)an}为等差数列,则an=( )

n+12n-1n+1n

A.n-1 B.n-1 C.n D.n+1 22+12-12

2anan+1+115.(2015·云南第一次统一检测)在数列{an}中,an>0,a1=,如果an+1是1与的等比中项,那么24-a2na2a3a4a100

a1+2+2+2+…+2的值是( )

234100

10010110099A. B. C. D. 99100101100

二、填空题

专业知识 整理分享

WORD格式..可编辑

1

6.(2014·全国新课标Ⅱ高考)数列{an}满足an+1=,a=2,则a1=________.

1-an82

7.若数列{n(n+4)()n}中的最大项是第k项,则k=________.

3

?1?

8(2015·江苏高考)设数列{an}满足a1=1,且an+1-an=n+1(n∈N*),则数列?a?前10项的和为________.

?n?

9.(2015·福建高考)若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于________.

三、解答题

10.(2015·湖北高考)设等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的公比为q.已知b1=a1,b2=2,q=d,S10=100.

(1) 求数列{an},{bn}的通项公式;

an

(2) 当d>1时,记cn=,求数列{cn}的前n项和Tn.

bn

11.(2014·山东高考)已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.

(1)求数列{an}的通项公式; (2)令bn=(-1)n

-1

4n

,求数列{bn}的前n项和Tn. an an+1

专业知识 整理分享

WORD格式..可编辑

2018届高三第二轮复习——数列答案

【 真

题 体 验 】 (第1讲等差、等比考点)

1.【解析】 设等差数列{an}的首项为a1,公差为d.由题设知d=1,S8=4S4,所以8a1+28=4(4a1+6),解

1119

得a1=,所以a10=+9=.故选B.

222

1

2.【解析】 设等比数列{an}的公比为q,a1=,a3a5=4(a4-1),由题可知q≠1,则a1q2×a1q 4=4(a1q3

4

111

-1),∴×q6=4(×q3-1),∴q6-16q3+64=0,∴(q3-8)2=0,∴q3=8,∴q=2,∴a2=.故选C.

1642

32

3.【解析】 由a2,a3,a7成等比数列,得a23=a2a7,则2d=-3a1d,即d=-a1.又2a1+a2=1,所以a1

2

22

=,d=-1.【答案】 -1 334.【解】 (1)an=3n-1.(2)bn?考点一、等差(比)的基本运算

1.【解析】 本题考查等比数列和等差数列等,结合转化思想即可轻松求解等比数列的公比,进而求解等比数列的通项公式.由3S1,2S2,S3成等差数列,得4S2=3S1+S3,即3S2-3S1=S3-S2,则3a2=a3,得公比q=3,所以an=a1qn1=3n1.【答案】 3n1

2.【解】 本题主要考查等差数列的通项公式与等比数列的前n项和公式,考查考生的运算求解能力.

(1)将已知条件中的a3,S3用首项a1与公差d表示,求得a1,d,即可求得数列{an}的通项公式;(2)结合(1)利用条件b1=a1,b4=a15求得公比,然后利用等比数列的前n项和公式进行计算.

(1)设{an}的公差为d,则由已知条件得 3×29a1+2d=2,3a1+d=,

223

即a1+2d=2,a1+d=,

21

解得a1=1,d=,

2

n-1n+1

故通项公式为an=1+,即an=.

22

15+1

(2)由(1)得b1=1,b4=a15==8.

2b4

设{bn}的公比为q,则q3==8,从而q=2,

b1

故{bn}的前n项和

b1(1-qn)1×(1-2n)nTn===2-1.

1-q1-2

考点二、等差(比)的证明与判断

31. ?n?122?3

【典例1】 解:(1)设{an}的公比为q,由题设可得

?a1(1?q)?2,na?(?2)q??2,a??2{a}解得 故的通项公式为 ?n1n2?a2(1?q?q)??6. 专业知识 整理分享

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

WORD格式..可编辑 [针对训练] n2+n1.(2014·湖南高考)已知数列{an}的前n项和Sn=,n∈N*. 2(1)求数列{an}的通项公式; (2)设bn=2an+(-1)nan,求数列{bn}的前2n项和. 1??n2.(2015·山东高考)已知数列{an}是首项为正数的等差数列,数列?a·a?的前n项和为. n+1?2n+1?n(1)求数列{an}的通项公式; (2)设bn=(an+1)·2an,求数列{bn}的前n项和Tn. .考点三、数列的综合应用 22【典例4】 (2015·陕西汉中质检)正项数列{an}的前n项和Sn

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com