当前位置:首页 > 补码运算规则
不带符号数补码的范围
1、8位不带符号数补码的范围:0~+255,00H~FFH或0X00~0XFF。
2、16位不带符号数补码的范围:0~+65535,0000H~FFFFH或0X0000~0XFFFF。
代数解释
在十进制中我们可以把n位二进制体系中的数a表示为:
求补码,意味着求: 而根据等比数列求和公式:
则
因为这里k0,k1,k2,k3……不是0就是1,所以1-k0,1-k1,1-k2的运算就是二进制下的取反
注:n位二进制,最高位为符号位,因此表示的数值范围-2^(n-1) ——2^(n-1) -1,所以模为2^(n-1)。上面提到的8位二进制模为2^8是因为最高位非符号位,表示的数值范围为0——2^8-1。
补码总结
补码只是一种相对合理的编码方案。这个方案在负数的机器表示中解决了3个问题:
1、数的表示:在数的表示上通过人为的定义来消除编码映射的不唯一性,对转换后的10000000强制认定为-128。当然对原码和反码也可以做这种强制认定,那为什么原码和反码没有流行起来?
2、数的运算:原码和反码没有流行起来,是因为在数的运算上对符号位的处理无法用当时已有的机器物理设计来实现,由于原码和反码在编码时采用了硬性的人工设计,这种设计在数理上无法自动的通过模来实现对符号位的自动处理,符号位必须人工处理,必须对机器加入新的物理部件来专门处理符号位,这加大了机器设计难度,加大的机器成本,不到万不得已,不走这条路。设计补码时,有意识的引用了模运算在数理上对符号位的自动处理,利用模的自动丢弃实现了符号位的自然处理,仅仅通过编码的改变就可以在不更改机器物理架构的基础上完成的预期的要求,所以补码沿用至今。
3、自身逻辑意义的完整性:补码这个编码方案要解决的是如何在机器中表示负数,其本质意义为用一个正数来表示这个正数对应的负数。所谓-20的补码是指:如何在机器中用补码形式表示-20。具体过程是这样的:将20的二进制形式直接写出00010100,然后所有位取反变成11101011,再加1变成了11101100。最简单的补码转换方式,不必去理会转换过程中的符号位,只关注转换前和最终转换后的符号位就行了。
那么对11101100求出其补码又具有什么现实含义呢?对一个数求补,逻辑过程是对这个数的所有的二进制位按位取反再加1。现实含义是求出这个数对应的负
数形式。对11101100求补就是求出这个数对应的负数的形式,直接操作下11101100,先所有位取反00010011,再加上1就成了00010100。对11101100求出其补码的含义:11101100按照现行补码码制表示的有符号数是-20,对于-20求补就是求出其对应的负数-(-20),现实中-(-20)是+20,那么求补运算的结果符合现实情况吗,00010100转换成有符号数正是+20,这就说明了补码自身逻辑意义是完整的,是不会自相矛盾的。
最后,补码的总前提是机器数,不要忘了机器数的符号位含义,最高位为0表示正数,最高位为1表示负数,而最高位是指机器字长的最左边一位。字节数100B,最高位为00000100中的最左边的0。
共分享92篇相关文档