当前位置:首页 > 四川省成都市2016年中考数学试题(Word版-含答案)
DF=2,根据等腰直角三角形的性质得到AF=DF=2,由勾股定理得到BD=面积得到AE=
=
=
,即可得到结论.
=,根据三角形的
【解答】解:∵△ABE≌△CDF≌△PMQ, ∴AE=DF=PM,∠EAB=∠FDC=∠MPQ, ∵△ADE≌△BCG≌△PNR,
∴AE=BG=PN,∠DAE=∠CBG=∠RPN, ∴PM=PN,
∵四边形ABCD是平行四边形, ∴∠DAB=∠DCB=45°, ∴∠MPN=90°,
∴△MPN是等腰直角三角形,
当PM最小时,对角线MN最小,即AE取最小值, ∴当AE⊥BD时,AE取最小值, 过D作DF⊥AB于F,
∵平行四边形ABCD的面积为6,AB=3, ∴DF=2,
∵∠DAB=45°, ∴AF=DF=2, ∴BF=1, ∴BD=∴AE=∴MN=
=AE=
. ==, , ,
故答案为:
五、解答题:共3个小题,共30分
26.某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.
(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;
(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个? 【考点】二次函数的应用. 【分析】(1)根据每多种一棵树,平均每棵树就会少结5个橙子列式即可;
(2)根据题意列出函数解析式,利用配方法把二次函数化为顶点式,根据二次函数的性质进行解答即可.
【解答】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600﹣5x(0≤x<120); (2)设果园多种x棵橙子树时,可使橙子的总产量为w, 则w=
17
=﹣5x2+100x+60000
=﹣5(x﹣10)2+60500,
则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.
27.如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.
(1)求证:BD=AC;
(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE. ①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长; ②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由. 【考点】几何变换综合题. 【分析】(1)先判断出AH=BH,再判断出△BHD≌△AHC即可;
(2)①先根据tanC=3,求出AH=3,CH=1,然后根据△EHA≌△FHC,得到,HP=3AP,AE=2AP,最后用勾股定理即可;
②先判断出△AGQ∽△CHQ,得到
,然后判断出△AQC∽△GQH,用相似比即可.
【解答】解:(1)在Rt△AHB中,∠ABC=45°, ∴AH=BH,
在△BHD和△AHC中,
,
∴△BHD≌△AHC, ∴BD=AC, (2)①如图,
在Rt△AHC中, ∵tanC=3, ∴
=3,
设CH=x,
∴BH=AH=3x, ∵BC=4,
18
∴3x+x=4, ∴x=1,
∴AH=3,CH=1,
由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH, ∴∠EHA=∠FHC,
,
∴△EHA≌△FHC, ∴∠EAH=∠C,
∴tan∠EAH=tanC=3, 过点H作HP⊥AE, ∴HP=3AP,AE=2AP,
在Rt△AHP中,AP2+HP2=AH2, ∴AP2+(3AP)2=9, ∴AP=∴AE=
, ;
②由①有,△AEH和△FHC都为等腰三角形, ∴∠GAH=∠HCG=90°, ∴△AGQ∽△CHQ, ∴∴
, ,
∵∠AQC=∠GQE, ∴△AQC∽△GQH, ∴
=sin30°=.
28.如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.
(1)求a的值及点A,B的坐标;
(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;
(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.
19
【考点】二次函数综合题. 【分析】(1)把点C代入抛物线解析式即可求出a,令y=0,列方程即可求出点A、B坐标. ①当直线l边AD相交与点M1时,(2)先求出四边形ABCD面积,分两种情形:根据S
=
×10=3,
求出点M1坐标即可解决问题.②当直线l边BC相交与点M2时,同理可得点M2坐标. (3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,得到b=k,利用方
程组求出点M坐标,求出直线DN解析式,再利用方程组求出点N坐标,列出方程求出k,即可解决问题.【解答】解:(1)∵抛物线与y轴交于点C(0,﹣). ∴a﹣3=﹣,解得:a=, ∴y=(x+1)2﹣3
当y=0时,有(x+1)2﹣3=0, ∴x1=2,x2=﹣4,
∴A(﹣4,0),B(2,0).
(2)∵A(﹣4,0),B(2,0),C(0,﹣),D(﹣1,﹣3)
∴S四边形ABCD=S△ADH+S梯形OCDH+S△BOC=×3×3+(+3)×1+×2×=10. 从面积分析知,直线l只能与边AD或BC相交,所以有两种情况: ①当直线l边AD相交与点M1时,则S∴×3×(﹣y∴y
)=3
=
×10=3,
=﹣2,点M1(﹣2,﹣2),过点H(﹣1,0)和M1(﹣2,﹣2)的直线l的解析式为y=2x+2.
②当直线l边BC相交与点M2时,同理可得点M2(,﹣2),过点H(﹣1,0)和M2(,﹣2)的直线l的解析式为y=﹣x﹣.
综上所述:直线l的函数表达式为y=2x+2或y=﹣x﹣.
(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,
20
∴﹣k+b=0, ∴b=k, ∴y=kx+k. 由
,
∴+(﹣k)x﹣﹣k=0,
∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,
∵点M是线段PQ的中点,∴由中点坐标公式的点M(k﹣1, k2). 假设存在这样的N点如图,直线DN∥PQ,设直线DN的解析式为y=kx+k﹣3 由
,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3)
∵四边形DMPN是菱形, ∴DN=DM,
∴(3k)2+(3k2)2=(
)2+(
)2,
整理得:3k4﹣k2﹣4=0, ∵k2+1>0, ∴3k2﹣4=0, 解得k=±,
∵k<0, ∴k=﹣
, ∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1) ∴PM=DN=2, ∵PM∥DN,
∴四边形DMPN是平行四边形, ∵DM=DN,
∴四边形DMPN为菱形,
∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2
﹣1,1).
2016年6月21日
21
共分享92篇相关文档