当前位置:首页 > 排列组合的21种例题
高考数学复习 解排列组合题的21种策略
排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.
1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法种数有
A、60种 B、48种 C、36种 D、24种
1.解析:把A,B视为一人,且B固定在A的右边,则本题相当于4人的全排列,A4?24种,答案:D. 2.相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.
例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A、1440种 B、3600种 C、4820种 D、4800种
2.解析:除甲乙外,其余5个排列数为A5种,再用甲乙去插6个空位有A6种,不同的排法种数是A5A6?3600种,选B. 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.
例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻)那么不同的排法种数是
A、24种 B、60种 C、90种 D、120种
3.解析:B在A的右边与B在A的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即52524 15A5?60种,选B. 2 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.
例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有
A、6种 B、9种 C、11种 D、23种
4.解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B. 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.
例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是
A、1260种 B、2025种 C、2520种 D、5040种
(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有 A、CCC4124844种 B、
44C12C84C43CCC种 C、CCA种 D、种 3A3412484441248335.解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有C10C8C7?2520种,选C. 6.答案:A. 6.全员分配问题分组法:
例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?
(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A、480种 B、240种 C、120种 D、96种
232117.解析:把四名学生分成3组有C4种方法,再把三组学生分配到三所学校有A3种,故共有C4A3?36种方法. 说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配. 8.答案:B. 7.名额分配问题隔板法:
例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 9.解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为C9?84种. 8.限制条件的分配问题分类法:
例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?
10.解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案A8种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有A8方法,所以共有3A8;③若乙参加而甲不参加同理也有3A8种;
3334623 ④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有A8种,共有7A8方法.所以共有不同的派遣方法总数为A8?3A8?3A8?7A8?4088种. 243322 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.
例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有
A、210种 B、300种 C、464种 D、600种
(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?
(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?
11.解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有A5、A4A3A3、11311313A3A3A3、A2A3A3和A3A3个,合并总计300个,选B. 511312.解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做A??7,14,21,14个元素,不能被7整除的数组成的集合记做eIA??1,2,3,4,298?共有,100?共有86个元素;由此可知,从A中任取2个元素的取法有C14,从A中任取一个,又从eIA中任取一个共有C14C86,两种情形共符合要求的取法有C14?C14C86?1295种. 13.解析:将I??1,2,311211,100?分成四个不相交的子集,能被4整除的数集97?,能被4除余2的数集A??4,8,12,100?;能被4除余1的数集B??1,5,9,C??2,6,能被4除余3的数集D??3,7,11,,98?,易见这四个集合中每一个99?,有25个元素;从A中任取两个数符合要;从B,D中各取一个数也符合要求;从C中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有2112C25?C25C25?C25种. 10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式
n(AB)?n(A)?n(B)?n(AB).
例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?
14,解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有: 4332n(I)?n(A)?n(B)?n(A?B)?A6?A5?A5?A4?252种. 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
例11.1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种? 15.A3A4?72种. 12.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理.
例12.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是 A、36种 B、120种 C、720种 D、1440种
(2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法?
16.解析:前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共 种,选C. 17.解析:看成一排,某2个元素在前半段四个位置中选排2个,有A4种,某1个元素排在后半段的四个位置中选一个有A4种,其余5个元素任排5个位置上有A5种,故共有A4A4A5?5760种排法. 13.“至少”“至多”问题用间接排除法或分类法:抽取两类混合元素不能分步抽.
例13.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有
A、140种 B、80种 C、70种 D、35种
18.解析1:逆向思考,至少各一台的反面就是分别只取一种型号,不取另一种型号的电视机,故不同的取法共有C9?C4?C5?70种,选.C 解析2:至少要甲型和乙 型电视机各一台可分两种情况:甲型1台乙型2台;甲型2台乙型1台;故不同的取法有C5C4?C5C4?70台,选C. 14.选排问题先取后排:从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先取后排法.
211233312515214
共分享92篇相关文档