当前位置:首页 > 高三高考数学国步分项分类题及析答案一七
[答案] B
[解析] sin80°=1-cos280° =1-cos2?-80°?=1-k2,
1-k2sin80°所以tan100°=-tan80°=-=-. cos80°k3.已知sin10°=a,则sin70°等于( ) A.1-2a2 C.1-a2 [答案] A
[解析] 由题意可知,sin70°=cos20°=1-2sin210°=1-2a2,故选A.
4.下列关系式中正确的是( ) A.sin11° [解析] ∵sin11°=cos79°,sin168°=cos78°, 又∵y=cosx在[0°,90°]上单调递减, 90°>79°>78°>10°, ∴cos79° π31 5.(2012·银川第一次质检)已知α∈(0,),sinα=,则+ 25cos2αtan2α的值为________. [答案] 7 B.1+2a2 D.a2-1 472 [解析] 由题意知,cosα=1-sinα=,cos2α=1-2sinα=, 525 2 tanα=sinα32tanα2412524 =,tan2α==,因此+tan2α=+=2cosα47cos2α771-tanα 7. 6.化简sin?kπ-α?·cos[?k-1?π-α]sin[?k+1?π+α]·cos?kπ+α?=______(k∈Z). [答案] -1 [解析] 对参数k分奇数、偶数讨论.当k=2n+1(n∈Z)时,原式=sin?2nπ+π-α?·cos?2nπ-α? sin?2nπ+2π+α?·cos?2nπ+π+α? =sin?π-α?·cosαsinα·cosαsinα·cos?π+α?=sinα·?-cosα?=-1. 当k=2n(n∈Z)时,原式 =sin?2nπ-α?·cos?2nπ-π-α?sin?2nπ+π+α?·cos?2nπ+α? =-sinα·?-cosα?-sinα·cosα =-1. 所以sin?kπ-α?·cos[?k-1?π-α]sin[?k+1?π+α]·cos?kπ+α? =-1.
共分享92篇相关文档