当前位置:首页 > 北师大版初中数学知识点总结
考点二、多项式
1、多项式:几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
2、同类项:所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。
3、去括号法则
(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。
(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。
4、整式的运算法则
整式的加减法:(1)去括号;(2)合并同类项。
n(am)?amn(m,n都是正整数) 整式的乘法:am?an?am?n(m,n都是正整数)
整式的除法:am?an?am?n(m,n都是正整数,a?0)
注意:(1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数
相同。
(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要
注意单项式的符号。
(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。
(5)公式中的字母可以表示数,也可以表示单项式或多项式。
1(a?0,p为正整数) ap(6)a0?1(a?0);a?p?(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得
的商相加,单项式除以多项式是不能这么计算的。
考点三、因式分解
1、因式分解:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
2、因式分解的常用方法
(1)提公因式法:ab?ac?a(b?c)
(2)运用公式法:a2?b2?(a?b)(a?b), a2?2ab?b2?(a?b)2,
a2?2ab?b2?(a?b)2
(3)分组分解法:ac?ad?bc?bd?a(c?d)?b(c?d)?(a?b)(c?d)
(4)十字相乘法:a2?(p?q)a?pq?(a?p)(a?q)
3、因式分解的一般步骤:
(1)如果多项式的各项有公因式,那么先提取公因式。
(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式
(3)分解因式必须分解到每一个因式都不能再分解为止。
考点四、分式
A的形式,如果B中B1、分式的概念:一般地,用A、B表示两个整式,A÷B就可以表示成含有字母,式子
A就叫做分式。其中,A叫做分式的分子,B叫做分式的分母。分式和整式B通称为有理式。
2、分式的性质
(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算法则
考点五、二次根式
1、二次根式:式子a(a?0)叫做二次根式,二次根式必须满足:含有二次根号“被开方数a必须是非负数。
”;
2、最简二次根式
若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
化二次根式为最简二次根式的方法和步骤:
(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3、同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
4、二次根式的性质
(1)(a)2?a(a?0)
(2)a2?a?
(3)ab?a?b(a?0,b?0) (4)
aa?(a?0,b?0) bb5、二次根式混合运算:二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。
第三章 方程(组)
考点一、一元一次方程的概念
共分享92篇相关文档