当前位置:首页 > 河南省南阳市第一中学校2017届高三上期第三次月考数学试题Word版含答案 doc
南阳一中2016年秋高三第三次月考数学答案
一.DACAD DBCBD B A
7?241?14二.(13)6 (14)3 (15) (16)2?1
15三、解答题(本大题共6小题,共70分.) 17. 解:(1)当m=0时,f(x)?(1? ?cosx)sin2x?sin2x?sinxcosxsinx
1?cos2x?sin2x1??3??[2sin(2x?)?1],由已知x?[,],得
22484sin(2x?(
2
?4)?[?21?2,1]从而得:f(x)的值域为[0,]------(5分) 22cosx??)sin2x?msin(x?)sin(x?)sinx44化,
简
得
:
)
f(x)?(1?11当tan??2,得:
f(x)?[sin2x?(1?m)cos2x]?22,
sin2a?2sinacosa2tana43??cos2a?,,代入上式,m=-2. -----(10分) 222sina?cosa1?tana5518. 解:(1)证明:?an?1?an224an?1,?an?1?2an224an?1,?1an?12?4an?1an22?1an2?4
即
1an?12?1an2?11?1???4,??2?为等差数列.???(n?1)?4?4n?3,22?ana1?an??2?an?1,又由题知an?0?an?4n?314n?3.—————6分
(2)解:bn?S2n?1?Sn,?bn?1?S2n?3?Sn?1,
222?bn?1?bn?(S2n?3?S2n?1)?(Sn?1?Sn)?a2n?3?a2n?2?an?1
?11140n?31?????0,
8n?98n?54n?1(8n?9)(8n?5)(4n?1)?bn?1?bn.即数列?bn?为递减数列,则要使bn??b1?S3?S1?a2?a3?22mm恒成立,只需b1?, 25251414m70,??,m?. 4545259m成立.———12分 25?存在最小的正整数m?8,使对任意n?N?,有bn?
???a2?8?0?19.解:P:?x1?x2?a,又∵|x1 –x2|2=(x1 +x2)2 -4x1x2≤ 9
?xx??2?12∴ |m2-5m-3|≥3,--------------------------------------(4分)
m ≤-1或 0≤m ≤5或m≥6, -------------------------------(6分) Q:f/(x)=3x2+2mx+(m+
4)=0,①△<0,无极值;②△=0时,列表可知,无极值; 3③△>0时,列表可知,有极值。解得: m<-1或m>4 -------------(10分) ∵P、Q 分)
20.解:(Ⅰ)由an?1?Sn?n,得an?Sn?1?(n?1)(n?2),两式相减得
同时为真,则:m<-1或 4<m≤5或m≥6 。-----------------(12
an?1?an?Sn?Sn?1?1?an?1,所以an?1?2an?1 所以an?1?1?2(an?1)(n?2)
又a2?3,所以an?1?2n?2(a2?1)?2n,从而an?2n?1(n?2) ,而a1?2,不符合上式,
n?1?2,所以an??n --(3分)
2?1,n?2?因为{bn}为等差数列,且前三项的和T3?9,所以b2?3,可设b1?3?d,b3?3?d,由
于a1?2,a2?3,a3?7,于是a1?b1?5?d,a2?b2?6,a3?b3?10?d,因为
a1?b1,a2?b2,a3?b3成等比数列,所以(5?d)(10?d)?36,d?2或d??7(舍)
所以bn?b1?(n?1)d?1?2(n?1)?2n?1 ----------(6分) (Ⅱ)因为
11111?11???????? 222(2k?1)(2k?1)?12k(2k?2)4k?1kbk??111111????????22222213(2n?1)bbb12n所以,当n?2时,
1??1??11?1???1?1???1?????????????4??2??23??n?1n???1?1?1?1??1?1?5 ----(12分)
444??n??t?ABD21.解:(1)在R?cosB?中,设AB?2单位长度,
2222?BD?3,BC?2BD?63,,
22在?ABC中,由余弦定理得,AC?AB?BC?2AB?BC?cosB?2?6
2?2?2?6??24,?AC?26,在?ABC中,由余弦定理得,
3AC2?BC2?AB224?62?2276cosC???.----------(6分)
2AC?BC182?26?6(2)设BD?CD?x,AC?y,由题可得,?ADC?B?在?ABC中,由正弦定理得,
?2,?DAC????ADC?C??2?B?C,
ACBCy2x?,??,①, sinBsin?BACsinBsin(B?C)在?ADC中,由正弦定理得,
ACCD?,sin?ADCsin?DAC
即
?ysin(B?)2??xsin(?B?C)2?,yx?,cosBcos(B?C)②,②
?①得,
1?BtaCn(?taB)n,?(C?)B?taCn?tBa?nC(?B2taBntaB?n(C?)Btan?B2Btan1????,由题知
BBtcaonBt2tan1?tBa?nC?(B)?ta?nB11?B222ttaann?taB?nB?(0,2?),nt?taB?(0?,?co)B2tBa?n??2??2,,
??tanC???22?12???0,cosC?,1??,?.----------(12分) ??cotB?2tanB?4??3?222x22.【解析】(Ⅰ)因为f?x???ax??a?1?x?a??a?1??e
??22222?exf??x???2ax??a?1??ex??ax2??a?1?x?a??a?1??ex??ax?a?1x?a????????0 因为x?0为f?x?的极值点,所以由f??0??ae?0,解得a?0
检验,当a?0时,所以x?0为
f??x??xex,当x?0时,f??x??0,当x?0时,f??x??0.
f?x?的极值点,故a?0.……………4分
12?12?x?x?1???x?1??ex??x?1??x?x?1?,??2??2??(Ⅱ) 当a?0时,不等式f?x???x?1???x?1?0?x?1?0??整理得?x?1??ex??1x2?x?1???0,即?x?12或?x?12令???????2????e??2x?x?1??0?e??2x?x?1??0???????1?xxg?x??ex??x2?x?1?,h?x??g??x??e??x?1?,h??x??e?1,当x?0?2?
时,h??x??ex?1?0;当x?0时,h??x??ex?1?0,所以h?x?在???,0?单调递减,在
(0,??)单调递增,所以h?x??h?0??0,即g??x??0, 所以g?x?在R上单调递增,而
g?0??0;
故ex???12??1?x?x?1??0?x?0;ex??x2?x?1??0?x?0, ?2??2?所以原不等式的解集为?xx?0或x?1?;………………………………8分 (Ⅲ) 当a?0时,f??x???ax?a?1x?a??e
?2?2??x因为x??1,2?,所以f??x??0,所以当a?0时,f??x??a?x?a??x?①
f?x?在?1,2?上是增函数.
??1?x??e, x??1,2?时,f?x?是增函数,f??x??0. a???1?x?1?e?0?x????,?a?,a??a?若a??1,则f??x??a?x?a??x?由?1,2?????1?,?a?得a??2; ?a? 若?1?a?0,则f??x??a?x?a??x???ex?0?x???a,??,由
②
??1?a???1?a??1,2?????a,??1?1得??a?0. ?2a?2③ 若a??1,f??x????x?1??ex?0,不合题意,舍去 综上可得,实数a的取值范围是???,?2????
?1?,??? …………………………12分 ?2?
共分享92篇相关文档