当前位置:首页 > 2012全国数学建模论文a题(葡萄酒)省一等奖范文 - 图文
2012高教社杯全国大学生数学建模竞赛
承 诺 书
我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 2. 3.
指导教师或指导教师组负责人 (打印并签名): 指导组
日期:2012 年 9 月 10 日
赛区评阅编号(由赛区组委会评阅前进行编号):
2012高教社杯全国大学生数学建模竞赛
编 号 专 用 页
评 阅 人 评 分 备 注 赛区评阅编号(由赛区组委会评阅前进行编号):
赛区评阅记录(可供赛区评阅时使用):
全国统一编号(由赛区组委会送交全国前编号):
全国评阅编号(由全国组委会评阅前进行编号):
2
葡萄酒的评价
摘要
本文主要根据评酒员对葡萄酒的一系列指标的打分,从而对葡萄酒的质量作出判别。考虑到酿酒葡萄的好坏、所酿葡萄酒的质量和酿酒工艺、陈酿技术等约束条件,为此我们建立模型来确定影响葡萄酒评价的各种因素。在这模型中利用excel,spss,matlab等一系列的数学工具对模型进行求解,综合统计分析的应用对所给的结果进行比较,从而得出最终的结果。
首先,对于问题1,分析两组评酒员的评价结果,每个评酒员对外观、口感、香气、平衡/整体四个方面指标得分进行求和,得到其总分,确定葡萄酒的质量。由于葡萄酒的质量满足正态分布,为了能分辨出两组的差异,所以利用spss进行配对T检验,从而得出两组评酒员有显著的差异。其次,用excel对两组进行方差分析,根据所得到的P值大小,得出第一组的评价结果更为可信。
对于问题2,在问题1的基础下,根据所给的理化指标和葡萄酒的质量利用spss统计分析软件进行分析,相关性分析对数据进行预备分析,剔除与葡萄酒质量无显著性相关的指标,再利用系统聚类的方法对酿酒葡萄进行分级。
对于问题3,利用主成分分析法,对问题二得出的相关显著性整合后的酿酒葡萄理化指标与葡萄酒的理化指标进行分析,确定两者的相关系数以及多元回归方程,从而得出两者之间存在的联系。
对于问题4,酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量,且在确定葡萄酒的质量时,感官指标也会对其产生影响。所以,由影响所酿葡萄酒质量有关的因素建立一个多元线性回归方程,并由此求出其相关系数,验证结果对错。
关键: T检验,方差分析,相关性分析,聚类分析,多元线性回归
1
一、问题的提出
通常确定葡萄酒质量时一般是通过一批有资质的评酒员对葡萄酒进行品评,每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。但是每个评酒员的品味、风格等各有千秋,故导致最后葡萄酒的质量变化,同时葡萄酒的好坏和所用酿葡萄酒质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。通过对影响葡萄酒因素的综合计算,以得到葡萄酒质量与各影响因素之间的关系。
二、问题的假设
1. 假设当时每个评酒员的精神处于最佳状态,即其感官分析很好。 2. 假设所给的数据真实可靠。。 3. 假设两组品酒员都是随机分配。
4. 假设在判断哪组更可信时候,忽略系统误差。
5. 假设评酒员对待每一份酒样品都保持公平、公正的工作原则。
6. 假设在简化问题的过程中,酿酒工艺等环节对葡萄酒的质量无影响。
三、符号说明
ai bi 红葡萄的样品号 i=1、2…27 白葡萄的样品号 i=1、2…28 评酒员对红葡萄指标的各种评分 i=1、2 j=0、1…9 评酒员对白葡萄指标的各种评分 i=1、2 j=0、1…9 Aij Bij X1i,X2i 红,白酿酒葡萄的各种理化指标 i=0、1… Y1i,Y2i 红,白葡萄酒的各种理化指标 i=0、1… cij Dij T 评酒员评出的红葡萄样品的总分 i=1、2 j=0、1…27 评酒员评出的白葡萄样品的总分 i=1、2 j=0、1…28 评酒员对10个样品的评分的总分 每组中两样本各对数据之差 d
2
共分享92篇相关文档