当前位置:首页 > 江苏省盐城市2013年中考数学试卷(解析版)
故答案为:.
点评: 此题主要考查了几何概率,确定阴影部分的面积与大圆的面积之间的关系是解题的关键. 14.(3分)(2013?盐城)若x2﹣2x=3,则代数式2x2﹣4x+3的值为 9 .
考点: 代数式求值. 专题: 计算题.
分析: 所求式子前两项提取2变形后,将已知等式代入计算即可求出值. 解答: 解:∵x2﹣2x=3,
∴2x2﹣4x+3=2(x2﹣2x)+3=6+3=9. 故答案为:9
点评: 此题考查了代数式求值,利用了整体代入的思想,是一道基本题型. 15.(3分)(2013?盐城)写出一个过点(0,3),且函数值y随自变量x的增大而减小的一次函数关系式: y=﹣x+3 .(填上一个答案即可)
考点: 一次函数的性质. 专题: 开放型.
分析: 首先可以用待定系数法设此一次函数关系式是:y=kx+b(k≠0).根据已知条件确定k,b应满
足的关系式,再根据条件进行分析即可.
解答: 解:设此一次函数关系式是:y=kx+b.
把x=0,y=3代入得:b=3,
又根据y随x的增大而减小,知:k<0.
故此题只要给定k一个负数,代入解出b值即可.如y=﹣x+3.(答案不唯一) 故答案是:y=﹣x+3.
点评: 本题考查了一次函数的性质.掌握待定系数法,首先根据已知条件确定k,b应满足的关系式,
再根据条件进行分析即可.
16.(3分)(2013?盐城)如图,将⊙O沿弦AB折叠,使经过圆心O,则∠OAB= 30° .
考点: 垂径定理;等边三角形的判定与性质;翻折变换(折叠问题) 专题: 探究型.
分析: 过点O作OC⊥AB于点D,交⊙O于点C,再由将⊙O沿弦AB折叠,使
OD=OC,故可得出OD=OA,再由OC⊥AB即可得出结论.
解答: 解:过点O作OC⊥AB于点D,交⊙O于点C,
∵将⊙O沿弦AB折叠,使∴OD=OC, ∴OD=OA, ∵OC⊥AB, ∴∠OAB=30°. 故答案为;30°.
经过圆心O,
经过圆心O可知,
点评: 本题考查的是垂径定理及图形的反折变换,熟知图形反折不变性的性质是解答此题的关键. 17.(3分)(2013?盐城)如图,在△ABC中,∠BAC=90°,AB=5cm,AC=2cm,将△ABC绕顶点C
按顺时针方向旋转45°至△A1B1C的位置,则线段AB扫过区域(图中的阴影部分)的面积为
cm2.
共分享92篇相关文档