云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 人教版八年级下册第十八章平行四边形全章复习和巩固(提高)知识讲解

人教版八年级下册第十八章平行四边形全章复习和巩固(提高)知识讲解

  • 62 次阅读
  • 3 次下载
  • 2025/5/30 19:43:12

平行四边形全章复习与巩固(提高)

【学习目标】

1. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.

2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算. 3. 掌握三角形中位线定理. 【知识网络】

【要点梳理】

要点一、平行四边形

1.定义:两组对边分别平行的四边形叫做平行四边形. 2.性质:(1)对边平行且相等; (2)对角相等;邻角互补; (3)对角线互相平分; (4)中心对称图形. 3.面积:S平行四边形?底?高

4.判定:边:(1)两组对边分别平行的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; (3)一组对边平行且相等的四边形是平行四边形. 角:(4)两组对角分别相等的四边形是平行四边形; (5)两组邻角分别互补的四边形是平行四边形. 边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形; 对角线:(7)对角线互相平分的四边形是平行四边形. 要点诠释:平行线的性质: (1)平行线间的距离都相等;

(2)等底等高的平行四边形面积相等. 要点二、矩形

1.定义:有一个角是直角的平行四边形叫做矩形. 2.性质:(1)具有平行四边形的所有性质;

(2)四个角都是直角;

(3)对角线互相平分且相等;

(4)中心对称图形,轴对称图形. 3.面积:S矩形=长?宽

4.判定:(1) 有一个角是直角的平行四边形是矩形. (2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形. 要点诠释:由矩形得直角三角形的性质:

(1)直角三角形斜边上的中线等于斜边的一半;

(2)直角三角形中,30度角所对应的直角边等于斜边的一半. 要点三、菱形

1. 定义:有一组邻边相等的平行四边形叫做菱形. 2.性质:(1)具有平行四边形的一切性质; (2)四条边相等;

(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;

(4)中心对称图形,轴对称图形.

3.面积:S菱形=底?高=对角线?对角线

24.判定:(1)一组邻边相等的平行四边形是菱形;

(2)对角线互相垂直的平行四边形是菱形; (3)四边相等的四边形是菱形.

要点四、正方形

1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形. 2.性质:(1)对边平行;

(2)四个角都是直角;

(3)四条边都相等;

(4)对角线互相垂直平分且相等,对角线平分对角;

(5) 两条对角线把正方形分成四个全等的等腰直角三角形; (6)中心对称图形,轴对称图形.

3.面积:S正方形=边长×边长=

1×对角线×对角线 24.判定:(1)有一个角是直角的菱形是正方形;

(2)一组邻边相等的矩形是正方形; (3)对角线相等的菱形是正方形; (4)对角线互相垂直的矩形是正方形;

(5)对角线互相垂直平分且相等的四边形是正方形; (6)四条边都相等,四个角都是直角的四边形是正方形.

【典型例题】

类型一、平行四边形

1、如图,点D是△ABC的边AB的延长线上一点,点F是边BC上的一个动点(不与点

B重合).以BD、BF为邻边作平行四边形BDEF,又APBE(点P、E在直线AB的

同侧),如果BD=

1AB,那么△PBC的面积与△ABC面积之比为( ) 41313A. B. C. D.

4554

【答案与解析】

解:过点P作PH∥BC交AB于H,连接CH,PF,

∵APBE,

∴四边形APEB是平行四边形, ∴PE∥AB,PE=AB,

∵四边形BDEF是平行四边形, ∴EF∥BD,EF=BD, 即EF∥AB,

∴P,E,F共线,

1AB,∴PE=AB=4a, 4则PF=PE-EF=3a,

设BD=a,∵BD=∵PH∥BC,

∴S△HBC?S△PBC,

∵PF∥AB,

∴四边形BFPH是平行四边形, ∴BH=PF=3a,

∵S△HBC:S△ABC=BH:AB=3a:4a=3:4, ∴S△PBC:S△ABC=3:4.

【总结升华】此题考查了平行四边形的判定与性质与三角形面积比的求解方法.此题难度较大,注意准确作出辅助线,注意等高三角形面积的比等于其对应底的比. 举一反三:

【变式】已知△ABC中,AB=3,AC=4,BC=5,分别以AB、AC、BC为一边在BC边同侧作

正△ABD、正△ACE和正△BCF,求以A、E、F、D四点为顶点围成的四边形的面积.

【答案】

证明:∵ AB=3,AC=4,BC=5,

∴∠BAC=90°

∵△ABD、△ACE和△BCF为正三角形, ∴AB=BD=AD,AC=AE=CE,BC=BF=FC , ∠1+∠FBA=∠2+∠FBA=60° ∴∠1=∠2

易证△BAC≌△BDF(SAS), ∴DF=AC=AE=4,∠BDF=90° 同理可证△BAC≌△FEC ∴AB=AD=EF=3

∴四边形AEFD是平行四边形(两组对边分别相等的四边形是平行四边形) ∵DF∥AE,DF⊥BD

延长EA交BD于H点,AH⊥BD,则H为BD中点 ∴平行四边形AEFD的面积=DF×DH=4×类型二、矩形

3=6. 22、如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.

(1)求证:四边形EFGH是矩形;

(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形

ABCD的面积.

【答案与解析】

(1)证明:∵四边形ABCD是矩形,

∴OA=0B=OC=OD, ∵AE=BF=CG=DH,

∴AO-AE=OB-BF=CO-CG=DO-DH, 即:OE=OF=OG=OH, ∴四边形EFGH是矩形;

(2)解:∵G是OC的中点,

∴GO=GC, ∵DG⊥AC,

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

平行四边形全章复习与巩固(提高) 【学习目标】 1. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系. 2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算. 3. 掌握三角形中位线定理. 【知识网络】 【要点梳理】 要点一、平行四边形 1.定义:两组对边分别平行的四边形叫做平行四边形. 2.性质:(1)对边平行且相等; (2)对角相等;邻角互补; (3)对角线互相平分; (4)中心对称图形. 3.面积:S平行四边形?底?高 4.判定:边:(1)两组对边分别平行的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形;

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com