当前位置:首页 > 2019年人教版九年级数学下册28.2.1解直角三角形
(封面)
2019年人教版九年级数学下册28
授课学科: 授课年级: 授课教师: 授课时间:
XX学校
28.2.1 解直角三角形
1.理解解直角三角形的意义和条件;(重点)
2.根据元素间的关系,选择适当的关系式,求出所有未知元素.(难点)
一、情境导入
世界遗产意大利比萨斜塔在1350年落成时就已倾斜.设塔顶中心点为B, 塔身中心线与垂直中心线夹角为∠A,过点B向垂直中心线引垂线,垂足为点C.在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m,求∠A的度数.
在上述的Rt△ABC中,你还能求其他未知的边和角吗? 二、合作探究
探究点一:解直角三角形
【类型一】 利用解直角三角形求边或角
已知在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a,b,c,按下列条件解直角三角形.
(1)若a=36,∠B=30°,求∠A的度数和边b、c的长; (2)若a=62,b=66,求∠A、∠B的度数和边c的长.
解析:(1)已知直角边和一个锐角,解直角三角形;(2)已知两条直角边,解直角三角形.
解:(1)在Rt△ABC中,∵∠B=30°,a=36,∴∠A=90°-∠B=60°,∵cosB=ac,即c=acosB=3632=243,∴b=sinB?c=12×243=123;
(2)在Rt△ABC中,∵a=62,b=66,∴tanA=ab=33,∴∠A=30°,∴∠B=60°,∴c=2a=122.
方法总结:解直角三角形时应求出所有未知元素,解题时尽可能地选择包含所求元素与两个已知元素的关系式求解.
变式训练:见《学练优》本课时练习“课堂达标训练” 第4题 【类型二】 构造直角三角形解决长度问题
一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.
解析:过点B作BM⊥FD于点M,求出BM与CM的长度,然后在△EFD中可求出∠EDF=60°,利用解直角三角形解答即可.
解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=45°,AC=122,∴BC=AC=122.∵AB∥CF,∴BM=sin45°BC=122×22=12,CM=BM=12.在△EFD中,∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BMtan60°=43,∴CD=CM-MD=12-43.
方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
变式训练:见《学练优》本课时练习“课后巩固提升” 第4题 【类型三】 运用解直角三角形解决面积问题
如图,在△ABC中,已知∠C=90°,sinA=37,D为边AC上一点,∠BDC=45°,DC=6.求△ABC的面积.
解析:首先利用正弦的定义设BC=3k,AB=7k,利用BC=CD=3k=6,求得k值,从而求得AB的长,然后利用勾股定理求得AC的长,再进
共分享92篇相关文档