当前位置:首页 > 屠宰废水处理的工艺设计
图3 氧化沟工艺流程图
(4)浅层曝气工艺:浅层曝气工艺是基于浅池理论和双模理论的研究成果,该工艺具有氧传递效率高、利用率高,有机负荷大等优点,但其曝气管易堵塞,维修清理频繁,曝气量减少会导致污泥沉降性能差;淡季加工量少时,废水浓度低,曝气池经常出现溶解氧偏高现象,引起污泥沉降性能差,结构松散,不易分离。
1.7 工艺方案的确定
工艺的选择必须注重成熟性和可靠性,强调技术的合理,而不是简单地提倡技术先进,必须把技术的风险降到最小程度。污水处理工艺应根据处理规模、水质特性、收纳水体的环境功能及当地的实际情况和要求,经全面技术经济比较后优选确定。结合国内和我省屠宰企业目前采用的废水治理方法,同时进行经济、技术论证比选分析,本设计提出使用UASB-射流曝气CASS工艺治理屠宰废水方案。
7
2 工艺流程
2.1 UASB工艺简述
UASB(Upflow Anaerobic Sludge Blanket)是升流式厌氧污泥床反应器废水厌氧生物处理技术的简称。该项处理工艺是由荷兰瓦格宁根(Wageningen)农业大学拉丁格(Lettinga)教授在20世纪70年代开发的。目前全世界已有1000余座UASB反应器处理装置在实际生产中使用。国内现在已有150座(不包括容积在100m3以下的)应用于处理各类有机废水的生产性UASB反应器工艺。
2.1.1 UASB的构成
图4是UASB反应器的示意图。UASB反应器的主体部分主要分为两个区域,即反应区和三相分离区。其中反应区为UASB反应器的工作主体。
图4 UASB反应器示意图
2.1.2 UASB工作原理
废水引入UASB反应器(见图4)的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床。厌氧反应发生在废水与污泥颗粒的接触过程。在厌氧状态下产生的沼气(只要是甲烷和二氧化碳)引起了内部的循环,这对于颗粒污泥的形成和维持有利。
在污泥层形成的一些气体附着在污泥颗粒上,附着和没有附着的气体向反应器顶部上升。上升到表面的污泥碰击三相分离器气体发射板的底部,引起附着气泡的污泥絮体脱气。气泡释放后污泥颗粒将沉淀到污泥床的表面,产生的气体被收集到反应器顶部的集气室。三相分离器挡板的作用为气体反射器和防止沼气气泡进入沉淀区,以免引起沉淀区的紊动,阻碍颗粒沉淀。包含一些剩余固体和污泥颗粒的液体经过分离器缝隙进入沉淀区。
8
由于分离器的斜壁沉淀区的过流面积在接近水面时增加,因此上升流速在接近排放点降低。由于流速降低,污泥絮体在沉淀区可以絮凝和沉淀。累积在三相分离器上的污泥絮体在一定程度将超过其保持在斜壁上的摩擦力,其将滑回到反应区,这部分污泥又可与进水有机物发生反应。
2.1.3 UASB工艺的主要优点
UASB工艺作为第二代厌氧反应器的典型代表,不仅具有工艺结构紧凑,有机负荷高,处理效果好以及占地面积小等优点,与传统的厌氧反应处理工艺相比,不仅实现了水力停留时间(HRT)与污泥龄(SRT)的分离,使反应器中可截留大量的生物量,使HRT缩短;同时由于其独特的水力特征,使反应器中的的污泥以颗粒化存在,由此极大地改善了污泥的沉降和分离性能,大大延长了污泥在反应器中的停留时间,显著提高了其处理能力[12]。
2.2 CASS工艺简述
CASS(Cyclic Activated Sludge System)工艺是间歇式活性污泥法SBR的一种变革,是近年来国际公认的生活污水及工业废水处理的先进工艺。1978年Goronszy教授利用活性污泥底物积累再生理论,根据底物去除与污泥负荷的实验结果以及活性污泥活性组成和污泥呼吸速率之间的关系,将生物选择器与SBR工艺有机结合,成功地开发出CASS工艺,1984年和1989年分别在美国和加拿大取得循环式活性污泥工艺(CASS)的专利。
2.2.1 CASS工作原理
CASS在SBR池内进水端增加了一个生物选择器,实现了连续进水(沉淀期、排水期仍连续进水),间歇排水。设置生物选择器的只要目的是使系统选择出絮凝性细菌,其容积约占整个池子的10%。生物选择器的工艺过程遵循活性污泥的基质积累—再生理论,使活性污泥在选择器中经历了一个高负荷的吸附阶段(基质积累),随后在主反应区经历一个较低负荷的基质降解阶段,以完成整个基质降解的全过程和污泥再生。
CASS工艺原理为:CASS反应器由三个区域组成:生物选择区、兼氧区和主反应区。生物选择区是设置在CASS前端的小容积区,通常在厌氧或兼氧条件下运行。兼氧区不仅具有辅助厌氧和对进水水质水量变化的缓冲作用,同时还具有促进磷的进一步释放和强化反硝化的作用。主反应区则是最终去除有机物的场所。
CASS池分预反应区和主反应区。在预反映区内,微生物能够通过酶的快速转移机理迅速吸附污水中大部分可溶性有机物,经历一个高负荷的基质快速积累过程,这对进水水质、水量、PH和有毒有害物质起到较好的缓冲作用,同时对丝状菌的生长起到抑制作用,可有效防止污泥膨胀;随后在主反应区经历一个较低负荷的基质降解过程。CASS工艺集反应、沉淀、排水功能于一体,污染物的降解在时间上是一个推流过程,而微生物则处于好氧、缺氧、厌氧周期性变化之中,从
9
而达到对污染物去除作用,同时还具有较好的脱氮、除磷功能。原理如图5所示,在反应器的前部设置了生物选择区,后部设置了可升降的自动滗水装置。其工作工程可分为曝气、沉淀和排水三个阶段,周期循环进行。污水连续进入预反应区,经过隔墙底部进入主反应区,在保证供氧的条件下,使有机物被池中的微生物降解。根据进水水质可对运行参数进行调整。
图5所示为CASS工艺的基本循环过程,具体依次为:
(1)充水-曝气阶段,边进水边曝气,同时将主反应区的污泥回流至生物选择器,污泥回流量约为处理废水量的20%。
(2)充水-沉淀阶段,停止曝气,静置沉淀以使泥水分离。在沉淀刚开始时,由于曝气所提供的搅拌作用能使污泥发生絮凝,随后污泥以区域沉降的形式下降,因而所形成的沉淀污泥浓度
图5 CASS工艺的循环操作过程
较高。据报道,当混合液的污泥浓度为3500mg/L时,经沉淀后污泥的浓度可达到10000mg/L以上
[13]
。
10
共分享92篇相关文档